scholarly journals Characterization of a Novel Acyl-ACP Δ9 Desaturase Gene Responsible for Palmitoleic Acid Accumulation in a Diatom Phaeodactylum tricornutum

2020 ◽  
Vol 11 ◽  
Author(s):  
Baoling Liu ◽  
Yan Sun ◽  
Wei Hang ◽  
Xiaodan Wang ◽  
Jinai Xue ◽  
...  

Palmitoleic acid (16:1Δ9) possesses a double bond at the seventh carbon atom from methyl end of the acyl chain and belongs to unusual ω-7 monounsaturated fatty acids with broad applications in food, pharmaceuticals, cosmetics, biofuel, and other industries. This high-value fatty acid accumulates up to >40% of total lipid in the marine diatom Phaeodactylum tricornutum. The present study was conducted to determine the key gene responsible for 16:1Δ9 biosynthesis in this unicellular alga. A new full-length cDNA and genomic DNA encoding acyl-ACP Δ9 desaturase (PtAAD) were isolated from P. tricornutum cells. Expression levels of PtAAD gene under normal and stress culture conditions were both positively correlated with 16:1Δ9 accumulation, implying its potential role for fatty acid determination. Functional complementation assay of a yeast mutant strain BY4839 evidenced that PtAAD could restore the synthesis of unsaturated fatty acid, especially generating high levels of 16:1Δ9. Further transient expression of PtAAD gene in Nicotiana benthamiana leaves was accompanied by the accumulation of 16:1Δ9, which was absent from control groups. Three-dimensional structure modeling studies showed that functional domain of PtAAD contained three variant amino acids (F160, A223, and L156), which may narrow the space shape of substrate-binding cavity to ensure the entry of 16:0-ACP. Consistent with this prediction, the mutated version of PtAAD gene (F160L, A223T, and L156M) in N. benthamiana systems failed to accumulate 16:1Δ9, but increased levels of 18:1Δ9. Taken together, PtAAD exhibits a strong enzymatic activity and substrate preference for 16:0-ACP, acting as the key player for high biosynthesis and accumulation of 16:1Δ9 in this alga. These findings provide new insights for better understanding the palmitoleic acid and oil biosynthetic mechanism in P. tricornutum, indicating that PtAAD gene may have practical applications for enriching palmitoleic acid and oil yield in other commercial oleaginous algae and crops.

Author(s):  
E-Ming Rau ◽  
Inga Marie Aasen ◽  
Helga Ertesvåg

Abstract Thraustochytrids are oleaginous marine eukaryotic microbes currently used to produce the essential omega-3 fatty acid docosahexaenoic acid (DHA, C22:6 n-3). To improve the production of this essential fatty acid by strain engineering, it is important to deeply understand how thraustochytrids synthesize fatty acids. While DHA is synthesized by a dedicated enzyme complex, other fatty acids are probably synthesized by the fatty acid synthase, followed by desaturases and elongases. Which unsaturated fatty acids are produced differs between different thraustochytrid genera and species; for example, Aurantiochytrium sp. T66, but not Aurantiochytrium limacinum SR21, synthesizes palmitoleic acid (C16:1 n-7) and vaccenic acid (C18:1 n-7). How strain T66 can produce these fatty acids has not been known, because BLAST analyses suggest that strain T66 does not encode any Δ9-desaturase-like enzyme. However, it does encode one Δ12-desaturase-like enzyme. In this study, the latter enzyme was expressed in A. limacinum SR21, and both C16:1 n-7 and C18:1 n-7 could be detected in the transgenic cells. Our results show that this desaturase, annotated T66Des9, is a Δ9-desaturase accepting C16:0 as a substrate. Phylogenetic studies indicate that the corresponding gene probably has evolved from a Δ12-desaturase-encoding gene. This possibility has not been reported earlier and is important to consider when one tries to deduce the potential a given organism has for producing unsaturated fatty acids based on its genome sequence alone. Key points • In thraustochytrids, automatic gene annotation does not always explain the fatty acids produced. • T66Des9 is shown to synthesize palmitoleic acid (C16:1 n-7). • T66des9 has probably evolved from Δ12-desaturase-encoding genes.


2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Lily M.G. Panggabean ◽  
Abdullah Rasyid ◽  
Zarrah Duniani ◽  
Yana Meliana ◽  
Indah Kurniasih

Trigliceride or triacylglicerol (TAG) composition in crude oil of sixteen strain of marine diatom has been detected by spectra analyses on an Electrospray - Ion Trap – Mass Spectrometry (ESI-IT-MS) HCT Bruker-Daltonic GmbH instrument with AgNO3 used as coordination ionization agent. Biomass samples of each microalga strain were taken from early and late stationary cultures in f/2 enriched seawater and algal oils were extracted according to Bligh and Dyer. Results from spectra analysis showed that P-Pt-P (C16:0-C16:1-C16:0) were distinguished in TAG from diatom strains Chaetoceros sp.1, Chaetoceros sp.2, Thalasiossira sp.1, Thalasiossira sp.2, Thalasiossira sp.3, Navicula sp. 1, Navicula sp. 2, Navicula sp. 3, Navicula sp. 4, Nitzschia sp. 2 and Amphora sp. In contrast, TAGs in Melosira sp. included P-P-P (C16:0-C16:0-C16:0) and P-P-O (C16:0-C16:0-C18:1) were identified. TAGs from Chaetoceros sp. were the most varies among samples, i.e. P-Pt-P (C16:0-C16:1-C16:0), A-P-M (C20:4-C16:0-C14:0), P-Pt-Lt (C16:0-C16:1-C18:3), P-Pt-A (C16:0-C16:1-C20:4), D-P-P (C22:6-C16:0-C16:0), A-Ln-P (C20:4-C18:2-C16:0). Various TAGs were also detected in Nitzschia sp.2, i.e. P-Pt-M (C16:0-C16:1-C14:0), P-Pt-P (C16:0-C16:1-C16:0), P-Pt-S (C16:0-C16:1-C18:0), P-Pt-A (C16:0-C16:1-C20:4). TAGs composition in Skeletonema strains that similar to those in Nitzschia sp.1 has longer carbon, i.e. P-P-O (C16:0-C16:0-C18:1), P-O-O (C16:0-C18:1-C18:1) and O-O-O (C18:1-C18:1-C18:1). TAGs with longer carbon chain and more double bond including highly unsaturated fatty acid C20:4 were increased with culture age in diatoms Chaetoceros sp.1, Chaetoceros sp.2, Thalasiossira sp.2, Navicula sp.1 and Nitzschia sp. 2.Keywords: diatom, TAG, ESI-IT-MS, f/2, early and late stationary


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudia Di Carlo ◽  
Bebiana C. Sousa ◽  
Marcello Manfredi ◽  
Jessica Brandi ◽  
Elisa Dalla Pozza ◽  
...  

AbstractPancreatic cancer stem cells (PCSCs) play a key role in the aggressiveness of pancreatic ductal adenocarcinomas (PDAC); however, little is known about their signaling and metabolic pathways. Here we show that PCSCs have specific and common proteome and lipidome modulations. PCSCs displayed downregulation of lactate dehydrogenase A chain, and upregulation of trifunctional enzyme subunit alpha. The upregulated proteins of PCSCs are mainly involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs. Accordingly, lipidomics reveals an increase in long and very long-chain unsaturated FAs, which are products of fatty acid elongase-5 predicted as a key gene. Moreover, lipidomics showed the induction in PCSCs of molecular species of cardiolipin with mixed incorporation of 16:0, 18:1, and 18:2 acyl chains. Our data indicate a crucial role of FA elongation and alteration in cardiolipin acyl chain composition in PCSCs, representing attractive therapeutic targets in PDAC.


2021 ◽  
Author(s):  
Richard Smith ◽  
Juliette Jouhet ◽  
Chiara Gandini ◽  
Vladimir Nekrasov ◽  
Eric Marechal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document