scholarly journals Roseobacters in a Sea of Poly- and Paraphyly: Whole Genome-Based Taxonomy of the Family Rhodobacteraceae and the Proposal for the Split of the “Roseobacter Clade” Into a Novel Family, Roseobacteraceae fam. nov.

2021 ◽  
Vol 12 ◽  
Author(s):  
Kevin Y. H. Liang ◽  
Fabini D. Orata ◽  
Yann F. Boucher ◽  
Rebecca J. Case

The family Rhodobacteraceae consists of alphaproteobacteria that are metabolically, phenotypically, and ecologically diverse. It includes the roseobacter clade, an informal designation, representing one of the most abundant groups of marine bacteria. The rapid pace of discovery of novel roseobacters in the last three decades meant that the best practice for taxonomic classification, a polyphasic approach utilizing phenotypic, genotypic, and phylogenetic characteristics, was not always followed. Early efforts for classification relied heavily on 16S rRNA gene sequence similarity and resulted in numerous taxonomic inconsistencies, with several poly- and paraphyletic genera within this family. Next-generation sequencing technologies have allowed whole-genome sequences to be obtained for most type strains, making a revision of their taxonomy possible. In this study, we performed whole-genome phylogenetic and genotypic analyses combined with a meta-analysis of phenotypic data to review taxonomic classifications of 331 type strains (under 119 genera) within the Rhodobacteraceae family. Representatives of the roseobacter clade not only have different environmental adaptions from other Rhodobacteraceae isolates but were also found to be distinct based on genomic, phylogenetic, and in silico-predicted phenotypic data. As such, we propose to move this group of bacteria into a new family, Roseobacteraceae fam. nov. In total, reclassifications resulted to 327 species and 128 genera, suggesting that misidentification is more problematic at the genus than species level. By resolving taxonomic inconsistencies of type strains within this family, we have established a set of coherent criteria based on whole-genome-based analyses that will help guide future taxonomic efforts and prevent the propagation of errors.

2010 ◽  
Vol 60 (8) ◽  
pp. 1858-1863 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Marc Vancanneyt ◽  
Seung Bum Kim ◽  
Kyung Sook Bae

The taxonomic position of the misclassified strains [Flexibacter] tractuosus KCTC 2958T and ‘[Microscilla] sericea’ LMG 13021 was studied using a polyphasic approach. The two strains shared 99.1 % 16S rRNA gene sequence similarity and 28 % DNA–DNA relatedness. On the basis of the phylogenetic evidence supported by genotypic and phenotypic data [Flexibacter] tractuosus KCTC 2958T and ‘[Microscilla] sericea’ LMG 13021 are classified as two distinct species in a novel genus, Marivirga, in the family ‘Flammeovirgaceae’, as Marivirga tractuosa comb. nov. and Marivirga sericea nom. rev., comb. nov., with strains KCTC 2958T (=ATCC 23168T =CIP 106410T =DSM 4126T =NBRC 15989T =NCIMB 1408T =VKM B-1430T) and LMG 13021T (=ATCC 23182T =NBRC 15983T =NCIMB 1403T), respectively, as the type strains. The type species is Marivirga tractuosa.


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1304-1310 ◽  
Author(s):  
Hyun-Woo Oh ◽  
Byung-Chun Kim ◽  
Doo-Sang Park ◽  
Won-Jin Jeong ◽  
Hyangmi Kim ◽  
...  

Two strains of Gram-staining-negative, rod-shaped bacteria that were motile by gliding, N7d-4T and B4a-b5, were isolated during a study of culturable bacteria in soil cultivated with potatoes. These isolates grew at 15–37 °C and at pH 6.5–7.0. The major cellular fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), anteiso-C15 : 0, iso-C15 : 0, iso-C17 : 0 3-OH and iso-C17 : 1ω9c. The major polar lipids were phosphatidyl-N-methylethanolamine and phosphatidylethanolamine. The strains contained d-18 : 0 and d-19 : 0 sphingosines. The DNA G+C contents of strains N7d-4T and B4a-b5 were 48.5 and 46.9 mol% (HPLC), respectively. A phylogenetic analysis based on 16S rRNA gene sequences showed that strains N7d-4T and B4a-b5 were affiliated with Pedobacter species in the family Sphingobacteriaceae . Strains N7d-4T and B4a-b5 shared 99.9 % sequence similarity, and the most closely related Pedobacter type strains were Pedobacter composti TR6-06T (96.5 and 96.7 % sequence similarity, respectively), P. oryzae N7T (95.4 and 95.6 %) and P. caeni LMG 22862T (94.0 and 94.4 %). Phenotypic data and phylogenetic inference clearly distinguished the two isolates from other Pedobacter species. Based on these data, the isolates are considered to represent a novel species of the genus Pedobacter , for which the name Pedobacter luteus sp. nov. is proposed. The type strain is N7d-4T ( = KCTC 22699T  = DSM 22385T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


Author(s):  
Renju Liu ◽  
Qiliang Lai ◽  
Li Gu ◽  
Peisheng Yan ◽  
Zongze Shao

A novel Gram-stain-negative, aerobic, gliding, rod-shaped and carotenoid-pigmented bacterium, designated A20-9T, was isolated from a microbial consortium of polyethylene terephthalate enriched from a deep-sea sediment sample from the Western Pacific. Growth was observed at salinities of 1–8 %, at pH 6.5–8 and at temperatures of 10–40 °C. The results of phylogenetic analyses based on the genome indicated that A20-9T formed a monophyletic branch affiliated to the family Schleiferiaceae , and the 16S rRNA gene sequences exhibited the maximum sequence similarity of 93.8 % with Owenweeksia hongkongensis DSM 17368T, followed by similarities of 90.4, 90.1 and 88.8 % with Phaeocystidibacter luteus MCCC 1F01079T, Vicingus serpentipes DSM 103558T and Salibacter halophilus MCCC 1K02288T, respectively. Its complete genome size was 4 035 598 bp, the genomic DNA G+C content was 43.2 mol%. Whole genome comparisons indicated that A20-9T and O. hongkongensis DSM 17368T shared 67.8 % average nucleotide identity, 62.7 % average amino acid identity value, 46.6% of conserved proteins and 17.8 % digital DNA–DNA hybridization identity. A20-9T contained MK-7 as the major respiratory quinone. Its major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phospatidylcholine; and the major fatty acids were iso-C15 : 0 (37.5 %), iso-C16 : 0 3-OH (12.4 %), and summed feature 3 (C16 : 1ω7c /C16 : 1ω6c, 11.6 %). Combining the genotypic and phenotypic data, A20-9T could be distinguished from the members of other genera within the family Schleiferiaceae and represents a novel genus, for which the name Croceimicrobium hydrocarbonivorans gen. nov., sp. nov. is proposed. The type strain is A20-9T (=MCCC 1A17358T =KCTC 72878T).


2010 ◽  
Vol 60 (9) ◽  
pp. 2170-2175 ◽  
Author(s):  
Kwang Kyu Kim ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
Hee-Mock Oh ◽  
Song-Gun Kim

The alphaproteobacterial strains GRP21T and PH34, which were isolated from coastal sediment of the East Sea, Korea, were subjected to a polyphasic taxonomic investigation. The strains were Gram-negative, non-motile, non-spore-forming, oval-shaped rods that produced creamy-white colonies on tryptic soy agar, required NaCl for growth, contained Q-10 as the predominant ubiquinone, contained 16 : 0, 18 : 1ω7c and 19 : 0 cyclo ω8c as major fatty acids and had polar lipid profiles consisting of phosphatidylcholine, phosphatidylglycerol, an unknown aminolipid, an unknown phospholipid and three unknown lipids. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that the strains were most closely related to Donghicola eburneus KCTC 12735T, with 94.5 % sequence similarity, but formed a separate lineage within the family Rhodobacteraceae. The combined genotypic and phenotypic data supported the conclusion that the strains represent a novel genus and species, for which the name Pontibaca methylaminivorans gen. nov., sp. nov. is proposed. The type strain of Pontibaca methylaminivorans is GRP21T (=KCTC 22497T =DSM 21219T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2677-2681 ◽  
Author(s):  
Leonid N. Ten ◽  
Sang-Hoon Baek ◽  
Wan-Taek Im ◽  
Myungjin Lee ◽  
Hyun Woo Oh ◽  
...  

A Gram-positive, facultatively anaerobic, motile, spore-forming bacterium, designated Gsoil 1411T, was isolated from soil of a ginseng field in Pocheon Province (South Korea) and was characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences revealed that strain Gsoil 1411T belongs to the family Paenibacillaceae, with closest sequence similarity to the type strains of Paenibacillus xylanilyticus (95.7 %), Paenibacillus illinoisensis (95.2 %) and Paenibacillus pabuli (94.8 %). Strain Gsoil 1411T showed less than 94 % sequence similarity to the type strains of other recognized members of the genus Paenibacillus. In addition, the presence of MK-7 as the major menaquinone, anteiso-C15 : 0 as a major fatty acid (44.8 %) and the presence of PAEN513F and PAEN862F signature sequences suggest that it is affiliated to the genus Paenibacillus. The G+C content of the genomic DNA was 53.9 mol%. On the basis of its phenotypic characteristics and phylogenetic distinctiveness, strain Gsoil 1411T is suggested to represent a novel species within the genus Paenibacillus, for which the name Paenibacillus panacisoli sp. nov. is proposed. The type strain is Gsoil 1411T (=KCTC 13020T=LMG 23405T).


2006 ◽  
Vol 56 (3) ◽  
pp. 541-547 ◽  
Author(s):  
Ingvild Wartiainen ◽  
Anne Grethe Hestnes ◽  
Ian R. McDonald ◽  
Mette M. Svenning

A Gram-negative, rod-shaped, non-motile, non-spore-forming, pink-pigmented bacterium, SV97T, was isolated from a wetland soil near Ny-Ålesund, Svalbard Islands, Norway (78° N). On the basis of 16S rRNA gene sequence similarity, strain SV97T was shown to belong to the Alphaproteobacteria and was highly related to a number of non-characterized Methylocystis strains with GenBank accession nos AJ458507 and AJ458502 (100 %) and AF177299, AJ458510, AJ458467, AJ458471, AJ431384, AJ458475, AJ458484, AJ458501 and AJ458466 (99 %). The most closely related type strains were Methylocystis parvus OBBPT (97·2 %) and Methylocystis echinoides IMET 10491T (97 %). The closest related recognized species within the genus Methylosinus was Methylosinus sporium NCIMB 11126T (96·0 % similarity). Chemotaxonomic and phenotypic data (C18 : 1 ω8 as the major fatty acid, non-motile, no rosette formation) supported the affiliation of strain SV97T to the genus Methylocystis. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain SV97T from the two recognized Methylocystis species. Strain SV97T therefore represents a novel species, for which the name Methylocystis rosea sp. nov. is proposed, with the type strain SV97T (=DSM 17261T=ATCC BAA-1196T).


2004 ◽  
Vol 54 (4) ◽  
pp. 1049-1054 ◽  
Author(s):  
Véronique Roux ◽  
Didier Raoult

Gram-positive, spore-forming rods were isolated from blood cultures of three different patients. Based on phylogenetic analyses, these strains were placed within the Paenibacillus cluster and specific phenotypic characteristics for each strain were described. Levels of 16S rRNA gene sequence similarity between existing Paenibacillus species and the three novel strains 2301065T, 2301032T and 2301083T were 87·6–94·4, 88·5–95·4 and 87·5–96·0 %, respectively, and anteiso-branched C15 : 0 was the major fatty acid. On the basis of phenotypic data and phylogenetic inference, it is proposed that these strains should be designated Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov. The type strains are respectively strain 2301065T (=CIP 107939T=CCUG 48215T), strain 2301083T (=CIP 107938T=CCUG 48214T) and strain 2301032T (=CIP 108005T=CCUG 48216T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1876-1881 ◽  
Author(s):  
Sooyeon Park ◽  
Sung-Min Won ◽  
Doo-Sang Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, rod-shaped bacterial strain, AH-M5T, which was isolated from a tidal flat sediment at Aphae Island in South Korea, was characterized taxonomically. Strain AH-M5T grew optimally at 25 °C, at pH 7.0–8.0 and in presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain AH-M5T clustered coherently with the type strains of Mangrovimonas yunxiaonensis and Meridianimaribacter flavus , showing 93.4–94.3 % sequence similarity. The novel strain exhibited 16S rRNA gene sequence similarity values of less than 93.4 % to the type strains of other recognized species. Strain AH-M5T contained MK-6 as the predominant menaquinone and iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the major fatty acids. The polar lipid profile of strain AH-M5T containing phosphatidylethanolamine and one unidentified lipid as major components was differentiated from those of the type strains of Mangrovimonas yunxiaonensis and Meridianimaribacter flavus . The DNA G+C content of strain AH-M5T was 34.8 mol%. Differential phenotypic properties, together with the phylogenetic and chemotaxonomic data, demonstrated that strain AH-M5T is distinguished from Mangrovimonas yunxiaonensis and Meridianimaribacter flavus . On the basis of the data presented, strain AH-M5T is considered to represent a novel genus and species within the family Flavobacteriaceae , for which the name Seonamhaeicola aphaedonensis gen. nov., sp. nov. is proposed. The type strain of the type species is AH-M5T ( = KCTC 32578T = CECT 8487T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1876-1880 ◽  
Author(s):  
Long Jin ◽  
Kwang Kyu Kim ◽  
Wan-Taek Im ◽  
Hee-Chan Yang ◽  
Sung-Taik Lee

Two novel bacteria, strains TR7-09T and P2-12-1, were isolated from samples of compost and river sediment, respectively. The strains comprised Gram-negative, motile, non-spore-forming rods, produced creamy white colonies on R2A agar, contained Q-8 as the predominant ubiquinone, contained iso-15 : 0, iso-17 : 0ω9c and iso-11 : 0 3-OH as the major fatty acids, and had polar lipid profiles consisting of phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and an unknown phospholipid. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strains were most closely related to Thermomonas haemolytica DSM 13605T, Silanimonas lenta KCTC 12236T and Xanthomonas campestris LMG 568T (with 92.5, 92.0 and 92.0 % sequence similarity, respectively) and formed a separate lineage within the family Xanthomonadaceae. The combined genotypic and phenotypic data supported the conclusion that the strains represent a novel genus and species, for which the name Aspromonas composti gen. nov., sp. nov. is proposed. The type strain is TR7-09T (=KCTC 12666T=DSM 18010T).


Sign in / Sign up

Export Citation Format

Share Document