scholarly journals The Hepatitis B Virus Interactome: A Comprehensive Overview

2021 ◽  
Vol 12 ◽  
Author(s):  
Ellen Van Damme ◽  
Jolien Vanhove ◽  
Bryan Severyn ◽  
Lore Verschueren ◽  
Frederik Pauwels

Despite the availability of a prophylactic vaccine, chronic hepatitis B (CHB) caused by the hepatitis B virus (HBV) is a major health problem affecting an estimated 292 million people globally. Current therapeutic goals are to achieve functional cure characterized by HBsAg seroclearance and the absence of HBV-DNA after treatment cessation. However, at present, functional cure is thought to be complicated due to the presence of covalently closed circular DNA (cccDNA) and integrated HBV-DNA. Even if the episomal cccDNA is silenced or eliminated, it remains unclear how important the high level of HBsAg that is expressed from integrated HBV DNA is for the pathology. To identify therapies that could bring about high rates of functional cure, in-depth knowledge of the virus’ biology is imperative to pinpoint mechanisms for novel therapeutic targets. The viral proteins and the episomal cccDNA are considered integral for the control and maintenance of the HBV life cycle and through direct interaction with the host proteome they help create the most optimal environment for the virus whilst avoiding immune detection. New HBV-host protein interactions are continuously being identified. Unfortunately, a compendium of the most recent information is lacking and an interactome is unavailable. This article provides a comprehensive review of the virus-host relationship from viral entry to release, as well as an interactome of cccDNA, HBc, and HBx.

2015 ◽  
Vol 24 (4) ◽  
pp. 473-479 ◽  
Author(s):  
Mihai Voiculescu

Hepatitis B virus (HBV) infection is a major health problem with an important biological and a significant socio-economic impact all over the world. There is a high pressure to come up with a new and more efficient strategy against HBV infection, especially after the recent success of HCV treatment. Preventing HBV infection through vaccine is currently the most efficient way to decrease HBV-related cirrhosis and liver cancer incidence, as well as the best way to suppress the HBV reservoir. The vaccine is safe and efficient in 80-95% of cases. One of its most important roles is to reduce materno-fetal transmission, by giving the first dose of vaccine in the first 24 hours after birth. Transmission of HBV infection early in life is still frequent, especially in countries with high endemicity.Successful HBV clearance by the host is immune-mediated, with a complex combined innate and adaptive cellular and humoral immune response. Different factors, such as the quantity and the sequence of HBV epitope during processing by dendritic cells and presenting by different HLA molecules or the polymorphism of T cell receptors (TOL) are part of a complex network which influences the final response. A new potential therapeutic strategy is to restore T-cell antiviral function and to improve innate and adaptive immune response by immunotherapeutic manipulation.It appears that HBV eradication is far from being completed in the next decades, and a new strategy against HBV infection must be considered. Abbreviations: ALT: alanine aminotransferase; APC: antigen presenting cells; cccDNA: covalently closed circular DNA; HBIG: hepatitis B immunoglobulin; HbsAg: hepatitis B surface antigen; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; CTL: cytotoxic T lymphocyte; IFN: interferon; NUC: nucleos(t)ide analogues; pg RNA: pre genomic RNA; TLR: toll-like receptors; TOL: T cell receptors.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A297-A297
Author(s):  
Fu-Sheng Wang ◽  
Fanping Meng ◽  
Jiehua Jin ◽  
Yuanyuan Li ◽  
Regina Wanju Wong ◽  
...  

BackgroundWe have demonstrated the ability of Hepatitis-B-virus (HBV)-specific T cell receptor (TCR) bioengineered T cells to recognize and lyse Hepatocellular carcinoma (HCC) cells expressing HBV antigens derived from HBV-DNA integration in patients with liver transplant.1 LioCyx-M is an immunotherapeutic product composing of autologous T cells transiently modified with in-vitro transcribed mRNA encoding HBV-specific TCR. The transient TCR expression makes LioCyx -M amenable to a dose escalating posology.MethodsThe primary endpoint of this phase 1 trial is to assess the safety and tolerability of LioCyx-M in patients with advanced HBV-HCC without curative treatment options. Eligible patients were diagnosed with Barcelona clinic liver cancer stage B or C HCC (Child-Pugh < 7 points), receiving >1 year antiviral treatment prior to enrollment. These patients had matching HLA class I genotypes which present HBV encoded antigen. Peripheral blood was collected from each patient prior to each dose for LioCyx-M manufacturing. Patients received 4 escalating doses of 1×104 cells/kg, 1×105 cells/kg, 1×106 cells/kg, 5×106 cells/kg bodyweight (BW) in the first treatment cycle, each intravenously administered weekly. Patients underwent 1-month safety assessment post the 4th infusion, according to Common Terminology NCI CTCAE Version 4.0.3. If there were no dose associated toxicities, patients were eligible to continue administration of LioCyx-M at dose of 5 × 106 cells/kg BW weekly. Tumor response per RECIST 1.1 criteria and survival time were assessed.ResultsAt data cutoff (30 April 2020), eight patients were enrolled, with a median age of 53 (range: 49 - 67). These patients received a median number of 6 (range: 4 - 12) infusions of LioCyx-M. 1 patient developed Grade 3 elevations in alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST) and bilirubin after receiving LioCyx-M at dose level of 1×105 cells/kg BW. Another patient had Grade 1 transient fever after receiving LioCyx-M at dose level 5×106 cells/kg BW in the 4th, 5th and 6th infusions. No treatment-related adverse events (trAEs) such as cytokine release syndrome or neurotoxicity were observed. No fatal trAEs were observed. The median time to progression was 1.9 months (range: 0.2 - 9.5 months). The median overall survival was 34 months (range: 3 - 38.2 months).ConclusionsThe encouraging clinical outcome and tolerable safety highlight the good benefit-risk profile of LioCyx-M. Therefore, further exploration of efficacy of LioCyx-M treatment for advanced HBV-HCC is warranted in a Phase 2 proof-of-concept clinical study.AcknowledgementsFunding: Lion TCR.Trial RegistrationNCT03899415Ethics ApprovalThe study was approved by Fifth Medical Center of Chinese PLA General Hospital’s Ethics Board, approval number R2016185DI010.ReferenceTan AT, Yang N, Lee Krishnamoorthy T, et al. Use of Expression Profiles of HBV-DNA Integrated Into Genomes of Hepatocellular Carcinoma Cells to Select T Cells for Immunotherapy. Gastroenterology 2019;156(6):1862–1876.e9.


2008 ◽  
Vol 12 ◽  
pp. e415
Author(s):  
Z.L. Wu ◽  
X.D. Lu ◽  
X.Q. Zhong ◽  
L.F. Ling ◽  
G. Lin ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Oluyinka Oladele Opaleye ◽  
Adeolu Sunday Oluremi ◽  
Adetona Babatunde Atiba ◽  
Moses Olubusuyi Adewumi ◽  
Olatunji Victor Mabayoje ◽  
...  

HIV has been known to interfere with the natural history of hepatitis B virus (HBV) infection. In this study we investigate the prevalence of occult hepatitis B virus infection (OBI) among HIV-infected individuals in Nigeria. Overall, 1200 archived HIV positive samples were screened for detectable HBsAg using rapid technique, in Ikole Ekiti Specialist Hospital. The HBsAg negative samples were tested for HBsAg, anti-HBc, and anti-HCV by ELISA. Polymerase chain reaction was used for HBV DNA amplification and CD4 counts were analyzed by cytometry. Nine hundred and eighty of the HIV samples were HBsAg negative. HBV DNA was detected in 21/188 (11.2%) of patients without detectable HBsAg. CD4 count for the patients ranged from 2 to 2,140 cells/μL of blood (mean = 490 cells/μL of blood). HCV coinfection was detected only in 3/188 (1.6%) of the HIV-infected patients (P>0.05). Twenty-eight (29.2%) of the 96 HIV samples screened were positive for anti-HBc. Averagely the HBV viral load was <50 copies/mL in the OBI samples examined by quantitative PCR. The prevalence of OBI was significantly high among HIV-infected patients. These findings highlight the significance of nucleic acid testing in HBV diagnosis in HIV patients.


2004 ◽  
Vol 48 (6) ◽  
pp. 2199-2205 ◽  
Author(s):  
Radhakrishnan P. Iyer ◽  
Yi Jin ◽  
Arlene Roland ◽  
John D. Morrey ◽  
Samir Mounir ◽  
...  

ABSTRACT Several nucleoside analogs are under clinical development for use against hepatitis B virus (HBV). Lamivudine (3TC), a nucleoside analog, and adefovir dipivoxil (ADV), an acyclonucleotide analog, are clinically approved. However, long-term treatment can induce viral resistance, and following the cessation of therapy, viral rebound is frequently observed. There continues to be a need for new antiviral agents with novel mechanisms of action. A library of more than 600 di- and trinucleotide compounds synthesized by parallel synthesis using a combinatorial strategy was screened for potential inhibitors of HBV replication using the chronically HBV-producing cell line 2.2.15. Through an iterative process of synthesis, lead optimization, and screening, three analogs were identified as potent inhibitors of HBV replication: dinucleotides ORI-7246 (drug concentration at which a 10-fold reduction of HBV DNA was observed [EC90], 1.4 μM) and ORI-9020 (EC90, 1.2 μM) and trinucleotide ORI-7170 (EC90, 7.2 μM). These analogs inhibited the replication of both strands of HBV DNA. No suppression of HBV protein synthesis or intracellular core particle formation by these analogs was observed. No inhibition of HBV DNA strand elongation by the analogs or their 5′-triphosphate versions was apparent in in vitro polymerase assays. Although the exact mechanism of action is not yet identified, present data are consistent with an inhibition of the HBV reverse transcriptase-directed priming step prior to elongation of the first viral DNA strand. In transient-transfection assays, these analogs inhibited the replication of 3TC-resistant HBV. Synergistic interactions in combination treatments between the analogs and either 3TC or ADV were observed. These compounds represent a novel class of anti-HBV molecules and warrant further investigation as potential therapeutic agents.


1987 ◽  
Vol 6 (3) ◽  
pp. 675-680 ◽  
Author(s):  
C.M. Chang ◽  
K.S. Jeng ◽  
C.P. Hu ◽  
S.J. Lo ◽  
T.S. Su ◽  
...  

2016 ◽  
Vol 10 (3) ◽  
pp. 553-559 ◽  
Author(s):  
Akira Sato ◽  
Toshiya Ishii ◽  
Fumiaki Sano ◽  
Takayuki Yamada ◽  
Hideaki Takahashi ◽  
...  

De novo hepatitis B is associated with a high risk of hepatic failure often resulting in fatal fulminant hepatitis even when nucleotide analogues are administered. A 77-year-old female developed de novo hepatitis B after R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone) treatment for diffuse large B-cell lymphoma. Hepatitis B virus (HBV) isolated from the patient was of genotype Bj, with a precore mutation (G1896A) exhibiting an extremely high viral load at the onset of hepatitis. She showed markedly high levels of transaminase with mild jaundice on admission and rapid decrease of prothrombin activity after admission. Although acute liver failure was averted by the administration of entecavir and corticosteroid pulse therapy, liver volume decreased to 860 ml, and marked hypoalbuminemia accompanying massive ascites occurred 2 months after the onset of hepatitis and persisted for 3 months with high levels of HBV DNA and mild abnormal alanine aminotransferase levels. Frequent infusions of albumin solution, nutrition support, and alleviation therapy showed limited effect. However, overall improvement along with HBV DNA reduction was observed after increasing the dose of entecavir and completion of prednisolone that was administered with a minimum dose for adrenal insufficiency. An immediate and sufficient suppression of virus replication with potent antiviral therapy is critical, particularly in patients infected with HBV precore mutation (G1896A) and/or Bj genotype, which may have a high viral replication and direct hepatocellular damage.


Sign in / Sign up

Export Citation Format

Share Document