scholarly journals Gene Sets and Mechanisms of Sulfate-Reducing Bacteria Biofilm Formation and Quorum Sensing With Impact on Corrosion

2021 ◽  
Vol 12 ◽  
Author(s):  
Abhilash Kumar Tripathi ◽  
Payal Thakur ◽  
Priya Saxena ◽  
Shailabh Rauniyar ◽  
Vinoj Gopalakrishnan ◽  
...  

Sulfate-reducing bacteria (SRB) have a unique ability to respire under anaerobic conditions using sulfate as a terminal electron acceptor, reducing it to hydrogen sulfide. SRB thrives in many natural environments (freshwater sediments and salty marshes), deep subsurface environments (oil wells and hydrothermal vents), and processing facilities in an industrial setting. Owing to their ability to alter the physicochemical properties of underlying metals, SRB can induce fouling, corrosion, and pipeline clogging challenges. Indigenous SRB causes oil souring and associated product loss and, subsequently, the abandonment of impacted oil wells. The sessile cells in biofilms are 1,000 times more resistant to biocides and induce 100-fold greater corrosion than their planktonic counterparts. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation and corrosion. Here, we examine the critical genes involved in biofilm formation and microbiologically influenced corrosion and categorize them into various functional categories. The current effort also discusses chemical and biological methods for controlling the SRB biofilms. Finally, we highlight the importance of surface engineering approaches for controlling biofilm formation on underlying metal surfaces.

2016 ◽  
Vol 14 (3) ◽  
pp. 557-561
Author(s):  
Nguyễn Thị Yên ◽  
Kiều Thị Quỳnh Hoa

Lead contaminated wastewater negatively impacts to living organisms as well as humans. In recent years, a highly promising biological process using the anaerobic production of sulfide ions by sulfate-reducing bacteria has presented itself as an alternative option for the removal of lead. This process is based on microbial utilization of electron donors, such as organic compounds (carbon sources), and sulfate as the terminal electron acceptor for sulfide production. The biogenic hydrogen sulfide reacts with dissolved heavy metals to form insoluble metal sulfide precipitates Removal of lead by an enriched consortium of sulfate-reducing bacteria (DM10) was evaluated sulfate reduction, sulfide production and lead precipitation. Four parallel anaerobic continuous stirred tank reactors (CSTR, V = 2L) (referred as R1 - R4) were fed with synthetic wastewater containing Pb2+ in the concentrations of 0, 100, 150 and 200 mg L-1 of lead and operated with a hydraulic retention time of 5 days for 40 days. The loading rates of each metal in R1- R4 were 0, 20, 30 and 40 mg L-1 d-1, respectively. The results showed that there was no inhibition of SRB growth and that lead removal efficiencies of 99-100% for Pb2+ were achieved in R2 (100 mg L-1) and R3 (150 mg L-1) throughout the experiment. For the highest lead concentration of  200 mg L-1, a decrease in efficiency of removal (from 100 to 96%) was observed at the end of the experiment. The obtained result of this study might help for a better control operation and performance improvements of reactors.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 625
Author(s):  
Lijuan Chen ◽  
Bo Wei ◽  
Xianghong Xu

The influence of sulfate-reducing bacteria (SRB) on the corrosion behaviors of X80 pipeline steel was investigated in a soil environment by electrochemical techniques and surface analysis. It was found that SRB grew well in the acidic soil environment and further attached to the coupon surface, resulting in microbiologically influenced corrosion (MIC) of the steel. The corrosion process of X80 steel was significantly affected by the SRB biofilm on the steel surface. Steel corrosion was inhibited by the highly bioactive SRB biofilm at the early stage of the experiment, while SRB can accelerate the corrosion of steel at the later stage of the experiment. The steel surface suffered severe pitting corrosion in the SRB-containing soil solution.


2014 ◽  
Vol 14 (5) ◽  
pp. 349-354 ◽  
Author(s):  
Akrima Abu Bakar ◽  
Norhazilan Noor ◽  
Nordin Yahaya ◽  
Rosilawati Mohd Rasol ◽  
Muhammad Khairool Fahmy ◽  
...  

CORROSION ◽  
10.5006/3467 ◽  
2020 ◽  
Vol 76 (7) ◽  
pp. 639-653
Author(s):  
M.A. Javed ◽  
W.C. Neil ◽  
G. McAdam ◽  
J.W. Moreau ◽  
S.A. Wade

The influence of different experimental media composition and air purging on the potential for microbiologically influenced corrosion (MIC) of Type 304 stainless steel with sulfate-reducing bacteria (SRB) was investigated. Modified Baar’s (MB) medium, MB medium without iron ions and supplemented with sodium chloride (MBN), and air purged MBN medium (MBO) were used. Pitting corrosion attack was found on the surface of the coupons for all of the conditions tested including the abiotic tests, and detailed statistical analysis showed no significant difference between the pitting results. General corrosion and maximum pit penetration rates also showed no difference between the coupons exposed to different test conditions. Interestingly, the pits found on the surface of the coupons in all of the tested conditions were comparable in size/shape and depth to that of the inclusions present on the surface of the stainless steel coupons. These findings suggest that (i) the test conditions studied do not lead to increased corrosion rates of stainless steel with SRBs and (ii) care needs to be taken to avoid the pitfall of misinterpreting the corrosion of inclusions present on the surface of stainless steels, which can occur as a result of cleaning of the coupons, as MIC pits.


1993 ◽  
Vol 333 ◽  
Author(s):  
Michael McNeil ◽  
Jennifer McKay

Abstract:Exposure of carbon and HY-80 high strength low alloy (HSLA) steels to anaerobic Postgate cultures containing sulfate reducing bacteria leads to production of mackinawite, Fe9S8, and vivianite, Fe3(PO4)2.8H2O, with minor amounts of other minerals, the vivianite being sometimes accompanied by siderite, FeCO3. The vivianite and mackinawite persist on exposure to air or oxygenated water. Green rust is a significant alteration product on some steels. The implications of these findings are discussed in light of present and possible future nuclear waste containers.


2009 ◽  
Vol 64 (3-4) ◽  
pp. 260-266
Author(s):  
Wu Chen ◽  
Fu Xiang ◽  
Jie Fu ◽  
Qiang Wang ◽  
Wenjun Wang ◽  
...  

Microbiologically influenced corrosion (MIC) caused by sulfate-reducing bacteria (SRB) has been investigated in an oilfield injection water system. Strain CW-01 was isolated from an oilfield and strain CW-04 was isolated from biofilm dirt of pipeline walls. The strains were facultative anaerobes, non-motile, Gram-positive, pole flagellum, and spore-forming curved rods. The growth was observed over the temperature range 20-70 °C. Strain CW-01 grew optimally at 37 °C. The pH range for growth was 3.0-11, optimal at pH 6.0. Strain CW-04 grew optimally at 48 °C. The pH range for growth was 3.0-10, optimal at pH 7.2. The strains grew at a very broad range of salt concentrations. Optimal growth was observed with 1.5 g/L NaCl for strain CW-01 and 0.7 g/L NaCl for strain CW-04. The strains showed most similarity in physiological characteristics, except for acetone and saccharose. Analysis of the 16S rDNA sequences allowed strains CW-01 and CW-04 to be classified into the genus Desulfotomaculum. The corrosion speciality of the strains had been comparatively investigated. Especially SRB’s growth curve, bearable oxygen capability, drug fastness and corrosion rate had been analyzed. The results showed that it is difficult to prevent bacterial corrosion caused by these two strains.


Sign in / Sign up

Export Citation Format

Share Document