scholarly journals Contributions of Luminance and Motion to Visual Escape and Habituation in Larval Zebrafish

2021 ◽  
Vol 15 ◽  
Author(s):  
Tessa Mancienne ◽  
Emmanuel Marquez-Legorreta ◽  
Maya Wilde ◽  
Marielle Piber ◽  
Itia Favre-Bulle ◽  
...  

Animals from insects to humans perform visual escape behavior in response to looming stimuli, and these responses habituate if looms are presented repeatedly without consequence. While the basic visual processing and motor pathways involved in this behavior have been described, many of the nuances of predator perception and sensorimotor gating have not. Here, we have performed both behavioral analyses and brain-wide cellular-resolution calcium imaging in larval zebrafish while presenting them with visual loom stimuli or stimuli that selectively deliver either the movement or the dimming properties of full loom stimuli. Behaviorally, we find that, while responses to repeated loom stimuli habituate, no such habituation occurs when repeated movement stimuli (in the absence of luminance changes) are presented. Dim stimuli seldom elicit escape responses, and therefore cannot habituate. Neither repeated movement stimuli nor repeated dimming stimuli habituate the responses to subsequent full loom stimuli, suggesting that full looms are required for habituation. Our calcium imaging reveals that motion-sensitive neurons are abundant in the brain, that dim-sensitive neurons are present but more rare, and that neurons responsive to both stimuli (and to full loom stimuli) are concentrated in the tectum. Neurons selective to full loom stimuli (but not to movement or dimming) were not evident. Finally, we explored whether movement- or dim-sensitive neurons have characteristic response profiles during habituation to full looms. Such functional links between baseline responsiveness and habituation rate could suggest a specific role in the brain-wide habituation network, but no such relationships were found in our data. Overall, our results suggest that, while both movement- and dim-sensitive neurons contribute to predator escape behavior, neither plays a specific role in brain-wide visual habituation networks or in behavioral habituation.

2019 ◽  
Author(s):  
Emmanuel Marquez-Legorreta ◽  
Lena Constantin ◽  
Marielle Piber ◽  
Itia A. Favre-Bulle ◽  
Michael A. Taylor ◽  
...  

AbstractHabituation is a form of learning during which animals stop responding to repetitive stimuli, and deficits in habituation are characteristics of several psychiatric disorders. Due to the technical challenges of measuring brain activity comprehensively and at cellular resolution, the brain-wide networks mediating habituation are poorly understood. Here we report brain-wide calcium imaging during visual learning in larval zebrafish as they habituate to repeated threatening loom stimuli. We show that different functional categories of loom-sensitive neurons are located in characteristic locations throughout the brain, and that both the functional properties of their networks and the resulting behavior can be modulated by stimulus saliency and timing. Using graph theory, we identify a principally visual circuit that habituates minimally, a moderately habituating midbrain population proposed to mediate the sensorimotor transformation, and downstream circuit elements responsible for higher order representations and the delivery of behavior. Zebrafish larvae carrying a mutation in the fmr1 gene have a systematic shift towards sustained premotor activity in this network, and show slower behavioral habituation. This represents the first description of a visual learning network across the brain at cellular resolution, and provides insights into the circuit-level changes that may occur in people with Fragile X syndrome and related psychiatric conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahmoud Harb ◽  
Justina Jagusch ◽  
Archana Durairaja ◽  
Thomas Endres ◽  
Volkmar Leßmann ◽  
...  

AbstractBrain-derived neurotrophic factor (BDNF) is implicated in a number of processes that are crucial for healthy functioning of the brain. Schizophrenia is associated with low BDNF levels in the brain and blood, however, not much is known about BDNF’s role in the different symptoms of schizophrenia. Here, we used BDNF-haploinsufficient (BDNF+/−) mice to investigate the role of BDNF in different mouse behavioral endophenotypes of schizophrenia. Furthermore, we assessed if an enriched environment can prevent the observed changes. In this study, male mature adult wild-type and BDNF+/− mice were tested in mouse paradigms for cognitive flexibility (attentional set shifting), sensorimotor gating (prepulse inhibition), and associative emotional learning (safety and fear conditioning). Before these tests, half of the mice had a 2-month exposure to an enriched environment, including running wheels. After the tests, BDNF brain levels were quantified. BDNF+/− mice had general deficits in the attentional set-shifting task, increased startle magnitudes, and prepulse inhibition deficits. Contextual fear learning was not affected but safety learning was absent. Enriched environment housing completely prevented the observed behavioral deficits in BDNF+/− mice. Notably, the behavioral performance of the mice was negatively correlated with BDNF protein levels. These novel findings strongly suggest that decreased BDNF levels are associated with several behavioral endophenotypes of schizophrenia. Furthermore, an enriched environment increases BDNF protein to wild-type levels and is thereby able to rescue these behavioral endophenotypes.


2021 ◽  
pp. 1-12
Author(s):  
Joonkoo Park ◽  
Sonia Godbole ◽  
Marty G. Woldorff ◽  
Elizabeth M. Brannon

Abstract Whether and how the brain encodes discrete numerical magnitude differently from continuous nonnumerical magnitude is hotly debated. In a previous set of studies, we orthogonally varied numerical (numerosity) and nonnumerical (size and spacing) dimensions of dot arrays and demonstrated a strong modulation of early visual evoked potentials (VEPs) by numerosity and not by nonnumerical dimensions. Although very little is known about the brain's response to systematic changes in continuous dimensions of a dot array, some authors intuit that the visual processing stream must be more sensitive to continuous magnitude information than to numerosity. To address this possibility, we measured VEPs of participants viewing dot arrays that changed exclusively in one nonnumerical magnitude dimension at a time (size or spacing) while holding numerosity constant and compared this to a condition where numerosity was changed while holding size and spacing constant. We found reliable but small neural sensitivity to exclusive changes in size and spacing; however, changing numerosity elicited a much more robust modulation of the VEPs. Together with previous work, these findings suggest that sensitivity to magnitude dimensions in early visual cortex is context dependent: The brain is moderately sensitive to changes in size and spacing when numerosity is held constant, but sensitivity to these continuous variables diminishes to a negligible level when numerosity is allowed to vary at the same time. Neurophysiological explanations for the encoding and context dependency of numerical and nonnumerical magnitudes are proposed within the framework of neuronal normalization.


Physiology ◽  
2016 ◽  
Vol 31 (3) ◽  
pp. 182-192 ◽  
Author(s):  
Eric Warrant ◽  
Marie Dacke

Despite their tiny eyes and brains, nocturnal insects have evolved a remarkable capacity to visually navigate at night. Whereas some use moonlight or the stars as celestial compass cues to maintain a straight-line course, others use visual landmarks to navigate to and from their nest. These impressive abilities rely on highly sensitive compound eyes and specialized visual processing strategies in the brain.


Author(s):  
Gilles Vanwalleghem ◽  
Kevin Schuster ◽  
Michael A. Taylor ◽  
Itia A. Favre-Bulle ◽  
Ethan K. Scott

AbstractInformation about water flow, detected by lateral line organs, is critical to the behavior and survival of fish and amphibians. While certain specific aspects of water flow processing have been revealed through electrophysiology, we lack a comprehensive description of the neurons that respond to water flow and the network that they form. Here, we use brain-wide calcium imaging in combination with microfluidic stimulation to map out, at cellular resolution, all neurons involved in perceiving and processing water flow information in larval zebrafish. We find a diverse array of neurons responding to forward flow, reverse flow, or both. Early in this pathway, in the lateral line ganglia, these are almost exclusively neurons responding to the simple presence of forward or reverse flow, but later processing includes neurons responding specifically to flow onset, representing the accumulated volume of flow during a stimulus, or encoding the speed of the flow. The neurons reporting on these more nuanced details are located across numerous brain regions, including some not previously implicated in water flow processing. A graph theory-based analysis of the brain-wide water flow network shows that a majority of this processing is dedicated to forward flow detection, and this is reinforced by our finding that details like flow velocity and the total volume of accumulated flow are only encoded for the simulated forward direction. The results represent the first brain-wide description of processing for this important modality, and provide a departure point for more detailed studies of the flow of information through this network.Significance statementIn aquatic animals, the lateral line is important for detecting water flow stimuli, but the brain networks that interpret this information remain mysterious. Here, we have imaged the activity of individual neurons across the entire brains of larval zebrafish, revealing all response types and their brain locations as water flow processing occurs. We find some neurons that respond to the simple presence of water flow, and others that are attuned to the flow’s direction, speed, duration, or the accumulated volume of water that has passed during the stimulus. With this information, we modeled the underlying network, describing a system that is nuanced in its processing of water flow simulating forward motion but rudimentary in processing flow in the reverse direction.


2019 ◽  
Author(s):  
Shigenori Inagaki ◽  
Ryo Iwata ◽  
Masakazu Iwamoto ◽  
Takeshi Imai

SUMMARYSensory information is selectively or non-selectively inhibited and enhanced in the brain, but it remains unclear whether this occurs commonly at the peripheral stage. Here, we performed two-photon calcium imaging of mouse olfactory sensory neurons (OSNs) in vivo and found that odors produce not only excitatory but also inhibitory responses at their axon terminals. The inhibitory responses remained in mutant mice, in which all possible sources of presynaptic lateral inhibition were eliminated. Direct imaging of the olfactory epithelium revealed widespread inhibitory responses at OSN somata. The inhibition was in part due to inverse agonism toward the odorant receptor. We also found that responses to odor mixtures are often suppressed or enhanced in OSNs: Antagonism was dominant at higher odor concentrations, whereas synergy was more prominent at lower odor concentrations. Thus, odor responses are extensively tuned by inhibition, antagonism, and synergy, at the early peripheral stage, contributing to robust odor representations.


2020 ◽  
Author(s):  
Yaoda Xu ◽  
Maryam Vaziri-Pashkam

ABSTRACTAny given visual object input is characterized by multiple visual features, such as identity, position and size. Despite the usefulness of identity and nonidentity features in vision and their joint coding throughout the primate ventral visual processing pathway, they have so far been studied relatively independently. Here we document the relative coding strength of object identity and nonidentity features in a brain region and how this may change across the human ventral visual pathway. We examined a total of four nonidentity features, including two Euclidean features (position and size) and two non-Euclidean features (image statistics and spatial frequency content of an image). Overall, identity representation increased and nonidentity feature representation decreased along the ventral visual pathway, with identity outweighed the non-Euclidean features, but not the Euclidean ones, in higher levels of visual processing. A similar analysis was performed in 14 convolutional neural networks (CNNs) pretrained to perform object categorization with varying architecture, depth, and with/without recurrent processing. While the relative coding strength of object identity and nonidentity features in lower CNN layers matched well with that in early human visual areas, the match between higher CNN layers and higher human visual regions were limited. Similar results were obtained regardless of whether a CNN was trained with real-world or stylized object images that emphasized shape representation. Together, by measuring the relative coding strength of object identity and nonidentity features, our approach provided a new tool to characterize feature coding in the human brain and the correspondence between the brain and CNNs.SIGNIFICANCE STATEMENTThis study documented the relative coding strength of object identity compared to four types of nonidentity features along the human ventral visual processing pathway and compared brain responses with those of 14 CNNs pretrained to perform object categorization. Overall, identity representation increased and nonidentity feature representation decreased along the ventral visual pathway, with the coding strength of the different nonidentity features differed at higher levels of visual processing. While feature coding in lower CNN layers matched well with that of early human visual areas, the match between higher CNN layers and higher human visual regions were limited. Our approach provided a new tool to characterize feature coding in the human brain and the correspondence between the brain and CNNs.


2012 ◽  
Vol 24 (10) ◽  
pp. 2043-2056 ◽  
Author(s):  
Ayano Matsushima ◽  
Masaki Tanaka

Resistance to distraction is a key component of executive functions and is strongly linked to the prefrontal cortex. Recent evidence suggests that neural mechanisms exist for selective suppression of task-irrelevant information. However, neuronal signals related to selective suppression have not yet been identified, whereas nonselective surround suppression, which results from attentional enhancement for relevant stimuli, has been well documented. This study examined single neuron activities in the lateral PFC when monkeys covertly tracked one of randomly moving objects. Although many neurons responded to the target, we also found a group of neurons that exhibited a selective response to the distractor that was visually identical to the target. Because most neurons were insensitive to an additional distractor that explicitly differed in color from the target, the brain seemed to monitor the distractor only when necessary to maintain internal object segregation. Our results suggest that the lateral PFC might provide at least two top–down signals during covert object tracking: one for enhancement of visual processing for the target and the other for selective suppression of visual processing for the distractor. These signals might work together to discriminate objects, thereby regulating both the sensitivity and specificity of target choice during covert object tracking.


2019 ◽  
Vol 30 (3) ◽  
pp. 1813-1829
Author(s):  
Sarah H Lindström ◽  
Sofie C Sundberg ◽  
Max Larsson ◽  
Fredrik K Andersson ◽  
Jonas Broman ◽  
...  

Abstract The most common excitatory neurotransmitter in the central nervous system, glutamate, is loaded into synaptic vesicles by vesicular glutamate transporters (VGluTs). The primary isoforms, VGluT1 and 2, are expressed in complementary patterns throughout the brain and correlate with short-term synaptic plasticity. VGluT1 deficiency is observed in certain neurological disorders, and hemizygous (VGluT1+/−) mice display increased anxiety and depression, altered sensorimotor gating, and impairments in learning and memory. The synaptic mechanisms underlying these behavioral deficits are unknown. Here, we show that VGluT1+/− mice had decreased visual processing speeds during a sustained visual-spatial attention task. Furthermore, in vitro recordings of corticothalamic (CT) synapses revealed dramatic reductions in short-term facilitation, increased initial release probability, and earlier synaptic depression in VGluT1+/− mice. Our electron microscopy results show that VGluT1 concentration is reduced at CT synapses of hemizygous mice, but other features (such as vesicle number and active zone size) are unchanged. We conclude that VGluT1-haploinsuficiency decreases the dynamic range of gain modulation provided by CT feedback to the thalamus, and this deficiency contributes to the observed attentional processing deficit. We further hypothesize that VGluT1 concentration regulates release probability by applying a “brake” to an unidentified presynaptic protein that typically acts as a positive regulator of release.


Sign in / Sign up

Export Citation Format

Share Document