scholarly journals InverseMuscleNET: Alternative Machine Learning Solution to Static Optimization and Inverse Muscle Modeling

2021 ◽  
Vol 15 ◽  
Author(s):  
Ali Nasr ◽  
Keaton A. Inkol ◽  
Sydney Bell ◽  
John McPhee

InverseMuscleNET, a machine learning model, is proposed as an alternative to static optimization for resolving the redundancy issue in inverse muscle models. A recurrent neural network (RNN) was optimally configured, trained, and tested to estimate the pattern of muscle activation signals. Five biomechanical variables (joint angle, joint velocity, joint acceleration, joint torque, and activation torque) were used as inputs to the RNN. A set of surface electromyography (EMG) signals, experimentally measured around the shoulder joint for flexion/extension, were used to train and validate the RNN model. The obtained machine learning model yields a normalized regression in the range of 88–91% between experimental data and estimated muscle activation. A sequential backward selection algorithm was used as a sensitivity analysis to discover the less dominant inputs. The order of most essential signals to least dominant ones was as follows: joint angle, activation torque, joint torque, joint velocity, and joint acceleration. The RNN model required 0.06 s of the previous biomechanical input signals and 0.01 s of the predicted feedback EMG signals, demonstrating the dynamic temporal relationships of the muscle activation profiles. The proposed approach permits a fast and direct estimation ability instead of iterative solutions for the inverse muscle model. It raises the possibility of integrating such a model in a real-time device for functional rehabilitation and sports evaluation devices with real-time estimation and tracking. This method provides clinicians with a means of estimating EMG activity without an invasive electrode setup.

2021 ◽  
Author(s):  
Ali Nasr ◽  
Sydney Marie Bell ◽  
Jiayuan He ◽  
Rachel l Whittaker ◽  
Clark R Dickerson ◽  
...  

Objective: This paper proposes machine learning models for mapping surface electromyography (sEMG) signals to regression of joint angle, joint velocity, joint acceleration, joint torque, and activation torque. Approach: The regression models, collectively known as MuscleNET, take one of four forms: ANN (Forward Artificial Neural Network), RNN (Recurrent Neural Network), CNN (Convolutional Neural Network), and RCNN (Recurrent Convolutional Neural Network). Inspired by conventional biomechanical muscle models, delayed kinematic signals were used along with sEMG signals as the machine learning model's input; specifically, the CNN and RCNN were modeled with novel configurations for these input conditions. The models' inputs contain either raw or filtered sEMG signals, which allowed evaluation of the filtering capabilities of the models. The models were trained using human experimental data and evaluated with different individual data. Main results: Results were compared in terms of regression error (using the root-mean-square) and model computation delay. The results indicate that the RNN (with filtered sEMG signals) and RCNN (with raw sEMG signals) models, both with delayed kinematic data, can extract underlying motor control information (such as joint activation torque or joint angle) from sEMG signals in pick-and-place tasks. The CNNs and RCNNs were able to filter raw sEMG signals. Significance: All forms of MuscleNET were found to map sEMG signals within 2 ms, fast enough for real-time applications such as the control of exoskeletons or active prostheses. The RNN model with filtered sEMG and delayed kinematic signals is particularly appropriate for applications in musculoskeletal simulation and biomechatronic device control.


2020 ◽  
Vol 223 (3) ◽  
pp. 437.e1-437.e15
Author(s):  
Joshua Guedalia ◽  
Michal Lipschuetz ◽  
Michal Novoselsky-Persky ◽  
Sarah M. Cohen ◽  
Amihai Rottenstreich ◽  
...  

2020 ◽  
pp. 193229682092262
Author(s):  
Darpit Dave ◽  
Daniel J. DeSalvo ◽  
Balakrishna Haridas ◽  
Siripoom McKay ◽  
Akhil Shenoy ◽  
...  

2018 ◽  
Vol 7 (3.12) ◽  
pp. 1128
Author(s):  
Mohammad Arshad ◽  
Md. Ali Hussain

Real-time network attacks have become an increasingly serious issue to LAN/WAN security in recent years. As the size of the network flow increases, it becomes difficult to pre-process and analyze the network packets using the traditional network intrusion detection tools and techniques. Traditional NID tools and techniques require high computational memory and time to process large number of packets in incremental manner due to limited buffer size. Web intrusion detection is also one of the major threat to real-time web applications due to unauthorized user’s request to web server and online databases. In this paper, a hybrid real-time LAN/WAN and Web IDS model is designed and implemented using the machine learning classifier. In this model, different types of attacks are detected and labelled prior to train the machine learning model. Future network packets are predicted using the trained machine learning classifier for attack prediction. Experimental results are simulated on real-time LAN/WAN network and client-server web application for performance analysis. Simulated results show that the proposed machine learning based attack detection model is better than the traditional statistical and rule based learning models in terms of time, detection rate are concerned.  


2018 ◽  
Vol 51 (27) ◽  
pp. 378-383 ◽  
Author(s):  
N.L. Loo ◽  
Y.S. Chiew ◽  
C.P. Tan ◽  
G. Arunachalam ◽  
A.M. Ralib ◽  
...  

2021 ◽  
Vol 73 (02) ◽  
pp. 37-39
Author(s):  
Trent Jacobs

For all that logging-while-drilling has provided since its wide-spread adoption in the 1980s, there is one thing on the industry’s wish list that it could never offer: an accurate way to tell the difference between oil and gas. A new technology created by petrotechnicals at Equinor, however, has made this possible. The innovation could be thought of as a pseudo-log, but Equinor is describing it as a reservoir-fluid-identification system. Using an internally developed machine-learning model, it compares a database of more than 4,000 reservoir samples against the real-time analysis of the mud gas that flows up a well as it is drilled. Crunched out of the technology’s various hardware and software components is a prediction on the gas/oil ratio (GOR) that the rock being drilled through will have once it is producing. Since this happens in real time, it boils down to an alert system for when drillers are tapping into uneconomic pay zones. “This is something people have tried to do for 30 years - using partial information to predict entire oil and gas properties,” said Tao Yang. He added that “the data acquisition is rather cheap compared with all the downhole tools, and it doesn’t cost you rig time,” highlighting that the mud-gas analyzer critical to the process sits on a rig or platform without interfering with drilling operations. Yang is a reservoir technology specialist at Equinor and one of the authors of a technical paper (SPE 201323) about the new digital technology that was presented at the SPE Annual Technical Conference and Exhibition in October. He and his colleagues spent more than 3 years building the system which began in the Norwegian oil company’s Houston office as a project to improve pressure/volume/temperature (PVT) analysis in tight-oil wells in North America. It has since found a home in the company’s much larger offshore business unit in Stavanger. Offshore projects designed around certain oil-production targets can face harsh realities when they end up producing more associated gas than expected. It is the difference between drilling an underperforming well full of headaches and one that will pay out hundreds of millions of dollars over its lifetime. By introducing real-time fluid identification, Equinor is trying to enforce a new control on that risk by giving drillers the information they need to pull the bit back and start drilling a side-track deeper into the formation where the odds are better of finding higher proportions of oil or condensates. At the conference, Yang shared details about some of the first field implementations, saying that in most cases the GOR predictions made by the fluid-identification system were confirmed by traditional PVT analysis from the trial wells. Unlike other advancements made on this front, he also said the new approach is the first of its kind to combine such a large database of PVT data with a machine-learning model “that is common to any well.” That means “we do not need to know where this well is located” to make a GOR prediction, said Yang.


Sign in / Sign up

Export Citation Format

Share Document