scholarly journals Comparing Glial Fibrillary Acidic Protein (GFAP) in Serum and Plasma Following Mild Traumatic Brain Injury in Older Adults

2020 ◽  
Vol 11 ◽  
Author(s):  
Nathan A. Huebschmann ◽  
Teemu M. Luoto ◽  
Justin E. Karr ◽  
Ksenia Berghem ◽  
Kaj Blennow ◽  
...  
2019 ◽  
Vol 36 (10) ◽  
pp. 1551-1560 ◽  
Author(s):  
Iftakher Hossain ◽  
Mehrbod Mohammadian ◽  
Riikka S.K. Takala ◽  
Olli Tenovuo ◽  
Linnéa Lagerstedt ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Gerard Janez Brett Clarke ◽  
Toril Skandsen ◽  
Henrik Zetterberg ◽  
Cathrine Elisabeth Einarsen ◽  
Casper Feyling ◽  
...  

Objective: To investigate the longitudinal evolution of three blood biomarkers: neurofilament light (NFL), glial fibrillary acidic protein (GFAP) and tau, in out-patients and hospitalized patients with mild traumatic brain injury (mTBI) compared to controls, along with their associations—in patients—with clinical injury characteristics and demographic variables, and ability to discriminate patients with mTBI from controls.Methods: A longitudinal observation study including 207 patients with mTBI, 84 age and sex-matched community controls (CCs) and 52 trauma controls (TCs). Blood samples were collected at 5 timepoints: acute (<24 h), 72 h (24–72 h post-injury), 2 weeks, 3 and 12 months. Injury-related, clinical and demographic variables were obtained at inclusion and brain MRI within 72 h.Results: Plasma GFAP and tau were most elevated acutely and NFL at 2 weeks and 3 months. The group of patients with mTBI and concurrent other somatic injuries (mTBI+) had the highest elevation in all biomarkers across time points, and were more likely to be victims of traffic accidents and violence. All biomarkers were positively associated with traumatic intracranial findings on MRI obtained within 72 h. Glial fibrillary acidic protein and NFL levels were associated with Glasgow Coma Scale (GCS) score and presence of other somatic injuries. Acute GFAP concentrations showed the highest discriminability between patients and controls with an Area Under the Curve (AUC) of 0.92. Acute tau and 2-week NFL concentrations showed moderate discriminability (AUC = 0.70 and AUC = 0.75, respectively). Tau showed high discriminability between mTBI+ and TCs (AUC = 0.80).Conclusions: The association of plasma NFL with traumatic intracranial MRI findings, together with its later peak, could reflect ongoing secondary injury or repair mechanisms, allowing for a protracted diagnostic time window. Patients experiencing both mTBI and other injuries appear to be a subgroup with greater neural injury, differing from both the mTBI without other injuries and from both control groups. Acute GFAP concentrations showed the highest discriminability between patients and controls, were highly associated with intracranial traumatic injury, and showed the largest elevations compared to controls at the acute timepoint, suggesting it to be the most clinically useful plasma biomarker of primary CNS injury in mTBI.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Etienne Laverse ◽  
Tong Guo ◽  
Karl Zimmerman ◽  
Martha S Foiani ◽  
Bharat Velani ◽  
...  

Abstract Mild traumatic brain injury is a relatively common event in contact sports and there is increasing interest in the long-term neurocognitive effects. The diagnosis largely relies on symptom reporting and there is a need for objective tools to aid diagnosis and prognosis. There are recent reports that blood biomarkers could potentially help triage patients with suspected injury and normal CT findings. We have measured plasma concentrations of glial and neuronal proteins and explored their potential in the assessment of mild traumatic brain injury in contact sport. We recruited a prospective cohort of active male rugby players, who had pre-season baseline plasma sampling. From this prospective cohort, we recruited 25 players diagnosed with mild traumatic brain injury. We sampled post-match rugby players without head injuries as post-match controls. We measured plasma neurofilament light chain, tau and glial fibrillary acidic protein levels using ultrasensitive single molecule array technology. The data were analysed at the group and individual player level. Plasma glial fibrillary acidic protein concentration was significantly increased 1-h post-injury in mild traumatic brain injury cases compared to the non-injured group (P = 0.017). Pairwise comparison also showed that glial fibrillary acidic protein levels were higher in players after a head injury in comparison to their pre-season levels at both 1-h and 3- to 10-day post-injury time points (P = 0.039 and 0.040, respectively). There was also an increase in neurofilament light chain concentration in brain injury cases compared to the pre-season levels within the same individual at both time points (P = 0.023 and 0.002, respectively). Tau was elevated in both the non-injured control group and the 1-h post-injury group compared to pre-season levels (P = 0.007 and 0.015, respectively). Furthermore, receiver operating characteristic analysis showed that glial fibrillary acidic protein and neurofilament light chain can separate head injury cases from control players. The highest diagnostic power was detected when biomarkers were combined in differentiating 1-h post-match control players from 1-h post-head injury players (area under curve 0.90, 95% confidence interval 0.79–1.00, P < 0.0002). The brain astrocytic marker glial fibrillary acidic protein is elevated in blood 1 h after mild traumatic brain injury and in combination with neurofilament light chain displayed the potential as a reliable biomarker for brain injury evaluation. Plasma total tau is elevated following competitive rugby with and without a head injury, perhaps related to peripheral nerve trauma and therefore total tau does not appear to be suitable as a blood biomarker.


2020 ◽  
Vol 10 (1) ◽  
pp. 23 ◽  
Author(s):  
Aleksandra Gozt ◽  
Melissa Licari ◽  
Alison Halstrom ◽  
Hannah Milbourn ◽  
Stephen Lydiard ◽  
...  

Background: Persisting post-concussion symptoms (PPCS) is a complex, multifaceted condition in which individuals continue to experience the symptoms of mild traumatic brain injury (mTBI; concussion) beyond the timeframe that it typically takes to recover. Currently, there is no way of knowing which individuals may develop this condition. Method: Patients presenting to a hospital emergency department (ED) within 48 h of sustaining a mTBI underwent neuropsychological assessment and demographic, injury-related information and blood samples were collected. Concentrations of blood-based biomarkers neuron specific enolase, neurofilament protein-light, and glial fibrillary acidic protein were assessed, and a subset of patients also underwent diffusion tensor–magnetic resonance imaging; both relative to healthy controls. Individuals were classified as having PPCS if they reported a score of 25 or higher on the Rivermead Postconcussion Symptoms Questionnaire at ~28 days post-injury. Univariate exact logistic regression was performed to identify measures that may be predictive of PPCS. Neuroimaging data were examined for differences in fractional anisotropy (FA) and mean diffusivity in regions of interest. Results: Of n = 36 individuals, three (8.33%) were classified as having PPCS. Increased performance on the Repeatable Battery for the Assessment of Neuropsychological Status Update Total Score (OR = 0.81, 95% CI: 0.61–0.95, p = 0.004), Immediate Memory (OR = 0.79, 95% CI: 0.56–0.94, p = 0.001), and Attention (OR = 0.86, 95% CI: 0.71–0.97, p = 0.007) indices, as well as faster completion of the Trails Making Test B (OR = 1.06, 95% CI: 1.00–1.12, p = 0.032) at ED presentation were associated with a statistically significant decreased odds of an individual being classified as having PPCS. There was no significant association between blood-based biomarkers and PPCS in this small sample, although glial fibrillary acidic protein (GFAP) was significantly increased in individuals with mTBI relative to healthy controls. Furthermore, relative to healthy age and sex-matched controls (n = 8), individuals with mTBI (n = 14) had higher levels of FA within the left inferior frontal occipital fasciculus (t (18.06) = −3.01, p = 0.008). Conclusion: Performance on neuropsychological measures may be useful for predicting PPCS, but further investigation is required to elucidate the utility of this and other potential predictors.


Author(s):  
Breton M. Asken ◽  
William G. Mantyh ◽  
Renaud La Joie ◽  
Amelia Strom ◽  
Kaitlin B. Casaletto ◽  
...  

2014 ◽  
Vol 31 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Ramon Diaz-Arrastia ◽  
Kevin K.W. Wang ◽  
Linda Papa ◽  
Marco D. Sorani ◽  
John K. Yue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document