scholarly journals Closed-Loop Frontal Midlineθ Neurofeedback: A Novel Approach for Training Focused-Attention Meditation

2020 ◽  
Vol 14 ◽  
Author(s):  
Tracy Brandmeyer ◽  
Arnaud Delorme
Author(s):  
Hodjat Pendar ◽  
Maryam Mahnama ◽  
Hassan Zohoor

A parallel manipulator is a closed loop mechanism in which a moving platform is connected to the base by at least two serial kinematic chains. The main problem engaged in these mechanisms, is their restricted working space as a result of singularities. In order to tackle these problems, many methods have been introduced by scholars. However, most of the mentioned methods are too much time consuming and need a great amount of computations. They also in most cases do not provide a good insight to the existence of singularity for the designer. In this paper a novel approach is introduced and utilized to identify singularities in parallel manipulators. By applying the new method, one could get a better understanding of geometrical interpretation of singularities in parallel mechanisms. Here we have introduced the Constraint Plane Method (CPM) and some of its applications in parallel mechanisms. The main technique used here, is based on Ceva Theorem.


2013 ◽  
Vol 25 (9) ◽  
pp. 2373-2420 ◽  
Author(s):  
Kevin C. Kowalski ◽  
Bryan D. He ◽  
Lakshminarayan Srinivasan

The closed-loop operation of brain-machine interfaces (BMI) provides a context to discover foundational principles behind human-computer interaction, with emerging clinical applications to stroke, neuromuscular diseases, and trauma. In the canonical BMI, a user controls a prosthetic limb through neural signals that are recorded by electrodes and processed by a decoder into limb movements. In laboratory demonstrations with able-bodied test subjects, parameters of the decoder are commonly tuned using training data that include neural signals and corresponding overt arm movements. In the application of BMI to paralysis or amputation, arm movements are not feasible, and imagined movements create weaker, partially unrelated patterns of neural activity. BMI training must begin naive, without access to these prototypical methods for parameter initialization used in most laboratory BMI demonstrations. Naive adaptive BMI refer to a class of methods recently introduced to address this problem. We first identify the basic elements of existing approaches based on adaptive filtering and define a decoder, ReFIT-PPF to represent these existing approaches. We then present Joint RSE, a novel approach that logically extends prior approaches. Using recently developed human- and synthetic-subjects closed-loop BMI simulation platforms, we show that Joint RSE significantly outperforms ReFIT-PPF and nonadaptive (static) decoders. Control experiments demonstrate the critical role of jointly estimating neural parameters and user intent. In addition, we show that nonzero sensorimotor delay in the user significantly degrades ReFIT-PPF but not Joint RSE, owing to differences in the prior on intended velocity. Paradoxically, substantial differences in the nature of sensory feedback between these methods do not contribute to differences in performance between Joint RSE and ReFIT-PPF. Instead, BMI performance improvement is driven by machine learning, which outpaces rates of human learning in the human-subjects simulation platform. In this regime, nuances of error-related feedback to the human user are less relevant to rapid BMI mastery.


2016 ◽  
Vol 11 (S321) ◽  
pp. 37-39
Author(s):  
Barry F. Madore ◽  
Erika K. Carlson

AbstractWe introduce a novel approach to interpreting the well-known spatial correlation of gas densities with on-going star formation. Treated as a closed-loop process involving two physically distinct phases the data can be subdivided into regions that are active and those that are quiescent. The active regions can be distinguished by the presence of high-mass, short-lived, but recently-formed OB stars; the quiescent regions are marked by an absence of these stars and they are considered to be recovering from the last star-formation event and are re-collapsing. The relative (areal) frequencies of those two phases are directly proportional to the relative timescales. For four Local Group galaxies, NGC 6822, the Large & Small Magellanic Clouds, and M33, the cloud assembly/collapse timescales are all found to be monotonically decreasing power-law functions of density, with as yet to be explained differences.


2010 ◽  
Vol 1 (1) ◽  
pp. 33-42 ◽  
Author(s):  
M. Riedel ◽  
M. Nefzi ◽  
B. Corves

Abstract. In this paper, a novel approach of grasp planning is applied to find out the appropriate grasp points for a reconfigurable parallel robot called PARAGRIP (Parallel Gripping). This new handling system is able to manipulate objects in the six-dimensional Cartesian space by several robotic arms using only six actuated joints. After grasping, the contact elements at the end of the underactuated arm mechanisms are connected to the object which forms a closed loop mechanism similar to the architecture of parallel manipulators. As the mounting and grasp points of the arms can easily be changed, the manipulator can be reconfigured to match the user's preferences and needs. This paper raises the question, how and where these grasp points are to be placed on the object to perform well for a certain manipulation task. This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010), 19 August 2010, Montréal, Canada.


Author(s):  
Christopher Pelzmann ◽  
Laxman Saggere

This paper presents a novel approach to manipulation and assembly of micro-scale objects using a chip-scale multi-fingered micromanipulator, in which multiple, independently controlled compliant fingers coordinate with each other to grasp and manipulate multiple objects simultaneously on-chip. The structural and functional advantages of this multi-fingered micromanipulator in achieving high dexterity in a compact form as compared to other state-of-the-art manipulation tools are discussed. A formulation of the kinematics of the manipulator’s compliant fingers along with two different control strategies including an operator-driven closed-loop control and a semi-autonomous open-loop control for coordinated manipulation and on-chip assembly of micro-scale objects are introduced. Finally, the details of implementation of both control strategies and successful experimental demonstration of manipulations and assembly of two interlocking micro-scale parts with sub-micron mating clearance using the multifingered manipulator are presented.


Author(s):  
Yoichiro Ashida ◽  
Kayoko Hayashi ◽  
Shin Wakitani ◽  
Toru Yamamoto

2021 ◽  
Vol 14 (6) ◽  
pp. 1662
Author(s):  
Nigel Gebodh ◽  
Marom Bikson

2021 ◽  
Author(s):  
Beni Mulyana ◽  
Aki Tsuchiyagaito ◽  
Jared Smith ◽  
Masaya Misaki ◽  
Rayus Kuplicki ◽  
...  

Recent studies suggest that transcranial electrical stimulation (tES) can be performed during functional magnetic resonance imaging (fMRI). The novel approach of using concurrent tES-fMRI to modulate and measure targeted brain activity/connectivity may provide unique insights into the causal interactions between the brain neural responses and psychiatric/neurologic signs and symptoms, and importantly, guide the development of new treatments. However, tES stimulation parameters to optimally influence the underlying brain activity in health and disorder may vary with respect to phase, frequency, intensity, and electrode's montage. Here, we delineate how a closed-loop tES-fMRI study of frontoparietal network modulation can be designed and performed. We also discuss the challenges of running a concurrent tES-fMRI, describing how we can distinguish clinically meaningful physiological changes caused by tES from tES-related artifacts. There is a large methodological parameter space including electrode types, electrolytes, electrode montages, concurrent tES-fMRI hardware, online fMRI processing pipelines and closed-loop optimization algorithms that should be carefully selected for closed-loop tES-fMRI brain modulation. We also provide technical details on how safety and quality of tES-fMRI settings can be tested, and how these settings can be monitored during the study to ensure they do not exceed safety standards. The initial results of feasibility and applicability of closed-loop tES-fMRI are reported and potential hypotheses for the outcomes are discussed.


Sign in / Sign up

Export Citation Format

Share Document