scholarly journals Examining Different Motor Learning Paradigms for Improving Balance Recovery Abilities Among Older Adults, Random vs. Block Training—Study Protocol of a Randomized Non-inferiority Controlled Trial

2021 ◽  
Vol 15 ◽  
Author(s):  
Hadas Nachmani ◽  
Inbal Paran ◽  
Moti Salti ◽  
Ilan Shelef ◽  
Itshak Melzer

Introduction: Falls are the leading cause of fatal and nonfatal injuries among older adults. Studies showed that older adults can reduce the risk of falls after participation in an unexpected perturbation-based balance training (PBBT), a relatively novel approach that challenged reactive balance control. This study aims to investigate the effect of the practice schedule (i.e., contextual interference) on reactive balance function and its transfer to proactive balance function (i.e., voluntary step execution test and Berg balance test). Our primary hypothesis is that improvements in reactive balance control following block PBBT will be not inferior to the improvements following random PBBT.Methods and Analysis: This is a double-blind randomized controlled trial. Fifty community-dwelling older adults (over 70 years) will be recruited and randomly allocated to a random PBBT group (n = 25) or a block PBBT group (n = 25). The random PBBT group will receive eight training sessions over 4 weeks that include unexpected machine-induced perturbations of balance during hands-free treadmill walking. The block PBBT group will be trained by the same perturbation treadmill system, but only one direction will be trained in each training session, and the direction of the external perturbations will be announced. Both PBBT groups (random PBBT and block PBBT) will receive a similar perturbation intensity during training (which will be customized to participant’s abilities), the same training period, and the same concurrent cognitive tasks during training. The generalization and transfer of learning effects will be measured by assessing the reactive and proactive balance control during standing and walking before and after 1 month of PBBT, for example, step and multiple steps and fall thresholds, Berg balance test, and fear of falls. The dependent variable will be rank transformed prior to conducting the analysis of covariance (ANCOVA) to allow for nonparametric analysis.Discussion: This research will explore which of the balance retraining paradigms is more effective to improve reactive balance and proactive balance control in older adults (random PBBT vs. block PBBT) over 1 month. The research will address key issues concerning balance retraining: older adults’ neuromotor capacities to optimize training responses and their applicability to real-life challenges.Clinical Trial Registration: Helsinki research ethics approval has been received (Soroka Medical Center approval #0396-16-SOR; MOH_2018-07-22_003536; www.ClinicalTrials.gov, NCT04455607).

2021 ◽  
Vol 13 ◽  
Author(s):  
Jacqueline A. Palmer ◽  
Aiden M. Payne ◽  
Lena H. Ting ◽  
Michael R. Borich

Heightened reliance on the cerebral cortex for postural stability with aging is well-known, yet the cortical mechanisms for balance control, particularly in relation to balance function, remain unclear. Here we aimed to investigate motor cortical activity in relation to the level of balance challenge presented during reactive balance recovery and identify circuit-specific interactions between motor cortex and prefrontal or somatosensory regions in relation to metrics of balance function that predict fall risk. Using electroencephalography, we assessed motor cortical beta power, and beta coherence during balance reactions to perturbations in older adults. We found that individuals with greater motor cortical beta power evoked following standing balance perturbations demonstrated lower general clinical balance function. Individual older adults demonstrated a wide range of cortical responses during balance reactions at the same perturbation magnitude, showing no group-level change in prefrontal- or somatosensory-motor coherence in response to perturbations. However, older adults with the highest prefrontal-motor coherence during the post-perturbation, but not pre-perturbation, period showed greater cognitive dual-task interference (DTI) and elicited stepping reactions at lower perturbation magnitudes. Our results support motor cortical beta activity as a potential biomarker for individual level of balance challenge and implicate prefrontal-motor cortical networks in distinct aspects of balance control involving response inhibition of reactive stepping in older adults. Cortical network activity during balance may provide a neural target for precision-medicine efforts aimed at fall prevention with aging.


BMJ Open ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. e038073
Author(s):  
Avril Mansfield ◽  
Elizabeth L Inness ◽  
Cynthia J Danells ◽  
David Jagroop ◽  
Tanvi Bhatt ◽  
...  

IntroductionFalls risk poststroke is highest soon after discharge from rehabilitation. Reactive balance training (RBT) aims to improve control of reactions to prevent falling after a loss of balance. In healthy older adults, a single RBT session can lead to lasting improvements in reactive balance control and prevent falls in daily life. While increasing the dose of RBT does not appear to lead to additional benefit for healthy older adults, stroke survivors, who have more severely impaired balance control, may benefit from a higher RBT dose. Our long-term goal is to determine the optimal dose of RBT in people with subacute stroke. This assessor-blinded pilot randomised controlled trial aims to inform the design of a larger trial to address this long-term goal.Methods and analysisParticipants (n=36) will be attending out-patient stroke rehabilitation, and will be randomly allocated to one of three groups: one, three or six RBT sessions. RBT will replace a portion of participants’ regular physiotherapy so that the total physical rehabilitation time will be the same for the three groups. Balance and balance confidence will be assessed at: (1) study enrolment; (2) out-patient rehabilitation discharge; and (3) 6 months postdischarge. Participants will report falls and physical activity for 6 months postdischarge. Pilot data will be used to plan the larger trial (ie, sample size estimate using fall rates, and which groups should be included based on between-group trends in pre-to-post training effect sizes for reactive balance control measures). Pilot data will also be used to assess the feasibility of the larger trial (ie, based on the accrual rate, outcome completion rate and feasibility of prescribing specific training doses).Ethics and disseminationInstitutional research ethics approval has been received. Study participants will receive a lay summary of results. We will also publish our findings in a peer-reviewed journal.Trial registration numberNCT04219696; Pre results.


2021 ◽  
Author(s):  
Jacqueline A. Palmer ◽  
Aiden M. Payne ◽  
Lena H. Ting ◽  
Michael R. Borich

AbstractHeightened reliance on the cerebral cortex for postural stability with aging is well-known, yet the cortical dynamics of balance control, particularly in relationship to balance function, is unclear. Here we aimed to investigate motor cortical activity in relationship to the level of balance challenge presented during reactive balance recovery, and identify circuit-specific interactions between motor cortex and prefrontal or somatosensory regions to metrics of balance function that predict fall risk. Using electroencephalography, we assessed motor cortical beta power, and beta coherence during balance reactions to perturbations in older adults. We found that individuals with greater somatosensory-motor beta coherence at baseline and lower beta power evoked over motor regions following perturbations demonstrated higher general clinical balance function. At the group-level, beta coherence between prefrontal-motor regions reduced during balance reactions. Older adults with the highest post-perturbation prefrontal-motor coherence showed greater cognitive dual-task interference and elicited stepping reactions at lower perturbation magnitudes. Our results support motor cortical beta activity as a potential biomarker for individual level of balance challenge and implicate prefrontal-and somatosensory-motor cortical networks in different aspects of balance control in older adults. Cortical network activity during balance may provide a neural target for precision-medicine efforts aimed at fall-prevention with aging.


Author(s):  
Nien Xiang Tou ◽  
Shiou-Liang Wee ◽  
Wei Ting Seah ◽  
Daniella Hui Min Ng ◽  
Benedict Wei Jun Pang ◽  
...  

AbstractTranslation of community-based functional training for older adults to reduce frailty is still lacking. We evaluated the effectiveness and implementation of a community-delivered group-based functional power training (FPT) program for frail older adults within their neighborhoods. A two-arm, multicenter assessor-blind stratified randomized controlled trial was conducted at four local senior activity centers in Singapore. Sixty-one community-dwelling older adults with low handgrip strength were randomized to intervention (IG) or control (CG) group. The IG underwent the FPT program (power and balance exercises using simple equipment) delivered by a community service provider. The 12-week program comprised 2 × 60 min sessions/week. CG continued usual activities at the centers. Functional performance, muscle strength, and frailty status were assessed at baseline and 3 months. Program implementation was evaluated using RE-AIM framework. The program was halted due to Coronavirus Disease 2019-related suspension of senior center activities. Results are reported from four centers, which completed the program. IG showed significantly greater improvement in the Short Physical Performance Battery test as compared to CG (p = 0.047). No effects were found for timed up and go test performance, muscle strength, and frailty status. The community program exhibited good reach, effectiveness, adoption, and implementation. Our study demonstrated that FPT was associated with greater improvement in physical function in pre-frail/frail participants as compared to exercise activities offered at local senior activity centers. It is a feasible intervention that can be successfully implemented for frail older adults in their neighborhoods. Trial registration ClinicalTrials.gov, NCT04438876. Registered 19 June 2020–retrospectively registered.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wiebren Zijlstra ◽  
Eleftheria Giannouli

Abstract Background Based on a conceptual framework, Kuspinar and colleagues analysed life-space mobility in community-dwelling older adults. However, a number of earlier mobility studies that used the same framework remained undiscussed. This correspondence article addresses similarities and differences between these studies, as well as highlight issues that need to be addressed to improve our understanding of mobility determinants in older adults. Findings Despite differences in methodological approach as well as in detailed results, the studies share one important outcome: regardless of the specific choice of potential mobility determinants, only a low to moderate proportion of mobility could be explained. Conclusions Our present understanding of the determinants of mobility in community-dwelling older adults is limited. A consistent terminology that takes into account the different aspects of mobility; the use of objective methods to assess real-life mobility; and monitoring changes in real-life mobility in response to interventions will contribute to furthering our understanding of mobility determinants.


Author(s):  
Mark W Rogers ◽  
Robert A Creath ◽  
Vicki Gray ◽  
Janice Abarro ◽  
Sandy McCombe Waller ◽  
...  

Abstract Background This factorial, assessor-blinded, randomized, and controlled study compared the effects of perturbation-induced step training (lateral waist-pulls), hip muscle strengthening, and their combination, on balance performance, muscle strength, and prospective falls among older adults. Methods Community-dwelling older adults were randomized to 4 training groups. Induced step training (IST, n = 25) involved 43 progressive perturbations. Hip abduction strengthening (HST, n = 25) utilized progressive resistance exercises. Combined training (CMB, n = 25) included IST and HST, and the control performed seated flexibility/relaxation exercises (SFR, n = 27). The training involved 36 sessions for a period of 12 weeks. The primary outcomes were the number of recovery steps and first step length, and maximum hip abduction torque. Fall frequency during 12 months after training was determined. Results Overall, the number of recovery steps was reduced by 31% and depended upon the first step type. IST and CMB increased the rate of more stable single lateral steps pre- and post-training than HST and SFR who used more multiple crossover and sequential steps. The improved rate of lateral steps for CMB exceeded the control (CMB/SFR rate ratio 2.68). First step length was unchanged, and HST alone increased hip torque by 25%. Relative to SFR, the fall rate ratios (falls/person/year) [95% confidence interval] were CMB 0.26 [0.07–0.90], IST 0.44 [0.18–1.08], and HST 0.30 (0.10–0.91). Conclusions Balance performance through stepping was best improved by combining perturbation and strength training and not strengthening alone. The interventions reduced future falls by 56%–74% over the control. Lateral balance perturbation training may enhance traditional programs for fall prevention.


2021 ◽  
pp. 1-17
Author(s):  
Taeko Makino ◽  
Hiroyuki Umegaki ◽  
Masahiko Ando ◽  
Xian Wu Cheng ◽  
Koji Ishida ◽  
...  

Background: Physical exercise is suggested to be effective for preventing cognitive decline in older adults, but the relative efficacy of different types of exercise have yet to be clarified. Objective: This single-blinded randomized controlled trial was designed to investigate the differential effects of aerobic exercise training (AT), resistance exercise training (RT), and combined exercise training (CT) on cognition in older adults with subjective memory complaints (SMC). Methods: Community-dwelling older adults with SMC (n = 415; mean age = 72.3 years old) were randomly assigned to one of the four groups: AT, RT, CT, or control group. The study consisted of two phases: a 26-week intervention and a 26-week follow-up. The participants were evaluated at baseline, 26 weeks (postintervention), and 52 weeks (follow-up). The primary outcome of this study was memory function, which was assessed using the Logical Memory II subtest of the Wechsler Memory Scale-Revised (WMS-R) score. The secondary outcomes included global cognitive function, verbal fluency, working memory, processing speed, and executive functions. Results: Intention-to-treat analysis by a mixed-effect model repeated measure showed that the AT group had significantly improved performance on the WMS-R Logical Memory II test (2.74 [1.82–3.66] points) than the control group (1.36 [0.44–2.28] points) at the postintervention assessment (p = 0.037). The effect was more pronounced in those without amnesia than those with amnesia. No significant improvement was observed in the RT and CT groups. Conclusion: This study suggests that AT intervention can improve delayed memory in community-dwelling older adults, particularly in individuals without objective memory decline.


Sign in / Sign up

Export Citation Format

Share Document