scholarly journals A Novel Viewpoint on the Anticipatory Postural Adjustments During Gait Initiation

2021 ◽  
Vol 15 ◽  
Author(s):  
Veronica Farinelli ◽  
Francesco Bolzoni ◽  
Silvia Maria Marchese ◽  
Roberto Esposti ◽  
Paolo Cavallari

Anticipatory postural adjustments (APAs) are the coordinated muscular activities that precede the voluntary movements to counteract the associated postural perturbations. Many studies about gait initiation call APAs those activities that precede the heel-off of the leading foot, thus taking heel-off as the onset of voluntary movement. In particular, leg muscles drive the center of pressure (CoP) both laterally, to shift the body weight over the trailing foot and backward, to create a disequilibrium torque pushing forward the center of mass (CoM). However, since subjects want to propel their body rather than lift their foot, the onset of gait should be the CoM displacement, which starts with the backward CoP shift. If so, the leg muscles driving such a shift are the prime movers. Moreover, since the disequilibrium torque is mechanically equivalent to a forward force acting at the pelvis level, APAs should be required to link the body segments to the pelvis: distributing such concentrated force throughout the body would make all segments move homogeneously. In the aim of testing this hypothesis, we analyzed gait initiation in 15 right-footed healthy subjects, searching for activities in trunk muscles that precede the onset of the backward CoP shift. Subjects stood on a force plate for about 10 s and then started walking at their natural speed. A minimum of 10 trials were collected. A force plate measured the CoP position while wireless probes recorded the electromyographic activities. Recordings ascertained that at gait onset APAs develop in trunk muscles. On the right side, Rectus Abdominis and Obliquus Abdominis were activated in 11 and 13 subjects, respectively, starting on average 33 and 54 ms before the CoP shift; Erector Spinae (ES) at L2 and T3 levels was instead inhibited (9 and 7 subjects, 104 and 120 ms). On the contralateral side, the same muscles showed excitatory APAs (abdominals in 11 and 12 subjects, 27 and 82 ms; ES in 10 and 7 subjects, 75 and 32 ms). The results of this study provide a novel framework for distinguishing postural from voluntary actions, which may be relevant for the diagnosis and rehabilitation of gait disorders.

2021 ◽  
Vol 15 ◽  
Author(s):  
Arnaud Delafontaine ◽  
Paul Fourcade ◽  
Ahmed Zemouri ◽  
D. G. Diakhaté ◽  
Gabriel Saiydoun ◽  
...  

A complete lack of bilateral activation of tibialis anterior (TA) during gait initiation (GI), along with bradykinetic anticipatory postural adjustments (APAs), often occurs in patients with Parkinson’s disease (PD) in their OFF-medication state. Functional electrical stimulation (FES) is a non-pharmacological method frequently used in neurorehabilitation to optimize the effect of L-DOPA on locomotor function in this population. The present study tested the potential of bilateral application of FES on TA to improve GI in PD patients. Fourteen PD patients (OFF-medication state, Hoehn and Yahr state 2-3) participated in this study. They performed series of 10 GI trials on a force-plate under the following experimental conditions: (1) GI without FES (control group), (2) GI with 2Hz-FES (considered as a very low FES frequency condition without biomechanical effect; placebo group) and (3) GI with 40Hz-FES (test group). In (2) and (3), FES was applied bilaterally to the TA during APAs (300 mA intensity/300 μs pulse width). Main results showed that the peak of anticipatory backward center of pressure shift, the forward center of mass (COM) velocity and shift at foot off were significantly larger in the 40 Hz FES condition than in the control condition, while the duration of step execution was significantly shorter. In contrast, the capacity of participants to brake the fall of their COM remained unchanged across conditions. Globally taken, these results suggest that acute application of 40-Hz FES to the TA may improve the capacity of PD patients to generate APAs during GI, without altering their balance capacity. Future studies are required before considering that TA FES application might be a valuable tool to improve GI in PD patients and be relevant to optimize the effects of L-DOPA medication on locomotor function.


2016 ◽  
Vol 54 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Clint Hansen ◽  
Jacques LaRue ◽  
Manh-Cuong Do ◽  
Mark L. Latash

AbstractWe explored changes in the postural preparation to stepping introduced by modifications of the initial coordinates of the center of pressure (COP). We hypothesized that the postural adjustments in the anterior-posterior direction would persist across all initial COP manipulations while the adjustments in the medio-lateral direction would be highly sensitive to the initial COP coordinate. Healthy subjects stood on a force plate, shifted the body weight to one of the initial conditions that spanned the range of COP coordinates in both directions, and initiated a single step or started to walk. No major changes were observed between the stepping and walking conditions. Changes in the initial COP coordinate in the medio-lateral direction led to scaling of the magnitude of the COP shift in that direction prior to stepping accompanied by a nearly proportional change in the COP shift in the anterior-posterior direction. Changes in the initial COP coordinate in the anterior-posterior direction led to scaling of the magnitude of the COP shift in that direction prior to stepping without consistent changes in the COP shift in the medio-lateral direction. We interpret the results as reflecting a neural organization using a small set of referent body configurations for the postural adjustments.


2011 ◽  
Vol 105 (5) ◽  
pp. 2275-2288 ◽  
Author(s):  
Miriam Klous ◽  
Pavle Mikulic ◽  
Mark L. Latash

We used the framework of the uncontrolled manifold hypothesis to explore the relations between anticipatory synergy adjustments (ASAs) and anticipatory postural adjustments (APAs) during feedforward control of vertical posture. ASAs represent a drop in the index of a multimuscle-mode synergy stabilizing the coordinate of the center of pressure in preparation to an action. ASAs reflect early changes of an index of covariation among variables reflecting muscle activation, whereas APAs reflect early changes in muscle activation levels averaged across trials. The assumed purpose of ASAs is to modify stability of performance variables, whereas the purpose of APAs is to change magnitudes of those variables. We hypothesized that ASAs would be seen before APAs and that this finding would be consistent with regard to the muscle-mode composition defined on the basis of different tasks and phases of action. Subjects performed a voluntary body sway task and a quick, bilateral shoulder flexion task under self-paced and reaction time conditions. Surface muscle activity of 12 leg and trunk muscles was analyzed to identify sets of 4 muscle modes for each task and for different phases within the shoulder flexion task. Variance components in the muscle-mode space and indexes of multimuscle-mode synergy stabilizing shift of the center of pressure were computed. ASAs were seen ∼100–150 ms prior to the task initiation, before APAs. The results were consistent with respect to different sets of muscle modes defined over the two tasks and different shoulder flexion phases. We conclude that the preparation for a self-triggered postural perturbation is associated with two types of anticipatory adjustments, ASAs and APAs. They reflect different feedforward processes within the hypothetical hierarchical control scheme, resulting in changes in patterns of covariation of elemental variables and in their patterns averaged across trials, respectively. The results show that synergies quantified using dissimilar sets of muscle modes show similar feedforward changes in preparation to action.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jana Kimijanová ◽  
Diana Bzdúšková ◽  
Zuzana Hirjaková ◽  
František Hlavačka

Gait initiation (GI) challenges the balance control system, especially in the elderly. To date, however, there is no consensus about the age effect on the anticipatory postural adjustments (APAs). There is also a lack of research on APAs in older adults after proprioceptive perturbation in the sagittal plane. This study aimed to compare the ability of young and older participants to generate APAs in response to the vibratory-induced perturbation delivered immediately before GI. Twenty-two young and 22 older adults performed a series of GI trials: (1) without previous vibration; (2) preceded by the vibration of triceps surae muscles; and (3) preceded by the vibration of tibialis anterior muscles. The APAs magnitude, velocity, time-to-peak, and duration were extracted from the center of pressure displacement in the sagittal plane. Young participants significantly modified their APAs during GI, whereas older adults did not markedly change their APAs when the body vertical was shifted neither backward nor forward. Significant age-related declines in APAs were observed also regardless of the altered proprioception.The results show that young adults actively responded to the altered proprioception from lower leg muscles and sensitively scaled APAs according to the actual position of the body verticality. Contrary, older adults were unable to adjust their postural responses indicating that the challenging transition from standing to walking probably requires higher reliance on the visual input. The understanding of age-related differences in APAs may help to design training programs for the elderly specifically targeted to improve balance control in different sensory conditions, particularly during gait initiation.


1994 ◽  
Vol 72 (6) ◽  
pp. 2892-2902 ◽  
Author(s):  
A. L. Burleigh ◽  
F. B. Horak ◽  
F. Malouin

1. In this study, the interaction between anticipatory postural adjustments for step initiation and automatic postural responses to an external perturbation were investigated by having subjects initiate a voluntary forward step while perturbed by a backward surface translation, which caused forward sway of the body. The postural adjustments for step initiation act to move the body center of mass (COM) forward, whereas the automatic postural responses act to move the COM backward to restore stance equilibrium. Because the postural behaviors are in opposition, we asked whether a temporal hierarchy exists in which automatic postural responses are executed to restore equilibrium and followed by stereotypic postural adjustments for step initiation, or whether the interaction between these two postural behaviors is more dynamic. 2. Lower extremity electromyographs (EMGs), ground reaction forces, and kinematics were recorded from 10 subjects during three conditions: to quantify the anticipatory postural adjustments for step initiation, subjects stepped forward as soon as they felt a proprioceptive cue; to quantify the automatic postural responses to perturbation, subjects maintained stance equilibrium in response to a backward surface translation under both feet; and to quantify the interaction between the postural adjustments for the voluntary step and the automatic responses to the perturbation, subjects were exposed to a backward surface translation and instructed to step forward as soon as they felt the platform begin to move. 3. The anticipatory adjustments for step initiation included tibialis activation [stance limb = 163 +/- 28 (SE) ms; swing limb = 173 +/- 33 ms] and soleus inhibition resulting in center of foot pressure (COP) moving backward and lateral toward the swing limb to propel the COM forward over the stance limb. Subsequently, activation of the swing limb gastrocnemius resulted in heel-off. In contrast, the automatic postural adjustments for maintenance of stance equilibrium during a backward surface translation included activation of soleus and gastrocnemius (104 +/- 23 ms and 115 +/- 14 ms, respectively) resulting in a symmetrical forward displacement of the COP that moved the COM back to its original position with respect to the feet. 4. When a forward step was initiated in response to the translation, the automatic postural responses were reduced in amplitude bilaterally in soleus and in the stance limb gastrocnemius. When present the postural response occurred at the same latency when the goal was to initiate a step as when the goal was to maintain standing.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document