scholarly journals Behavioral and Neural Dynamics of Interpersonal Synchrony Between Performing Musicians: A Wireless EEG Hyperscanning Study

2021 ◽  
Vol 15 ◽  
Author(s):  
Anna Zamm ◽  
Caroline Palmer ◽  
Anna-Katharina R. Bauer ◽  
Martin G. Bleichner ◽  
Alexander P. Demos ◽  
...  

Interpersonal synchrony refers to the temporal coordination of actions between individuals and is a common feature of social behaviors, from team sport to ensemble music performance. Interpersonal synchrony of many rhythmic (periodic) behaviors displays dynamics of coupled biological oscillators. The current study addresses oscillatory dynamics on the levels of brain and behavior between music duet partners performing at spontaneous (uncued) rates. Wireless EEG was measured from N = 20 pairs of pianists as they performed a melody first in Solo performance (at their spontaneous rate of performance), and then in Duet performances at each partner’s spontaneous rate. Influences of partners’ spontaneous rates on interpersonal synchrony were assessed by correlating differences in partners’ spontaneous rates of Solo performance with Duet tone onset asynchronies. Coupling between partners’ neural oscillations was assessed by correlating amplitude envelope fluctuations of cortical oscillations at the Duet performance frequency between observed partners and between surrogate (re-paired) partners, who performed the same melody but at different times. Duet synchronization was influenced by partners’ spontaneous rates in Solo performance. The size and direction of the difference in partners’ spontaneous rates were mirrored in the size and direction of the Duet asynchronies. Moreover, observed Duet partners showed greater inter-brain correlations of oscillatory amplitude fluctuations than did surrogate partners, suggesting that performing in synchrony with a musical partner is reflected in coupled cortical dynamics at the performance frequency. The current study provides evidence that dynamics of oscillator coupling are reflected in both behavioral and neural measures of temporal coordination during musical joint action.

2013 ◽  
Vol 11 (2) ◽  
Author(s):  
Susi Gustina ◽  
Timbul Haryono ◽  
G.R. Lono L. Simatupang ◽  
Triyono Bramantyo

Bel Canto Singing Technique. This article attempting to understand the subjectivity of a woman singer in musicperformance. The poststructuralist feminist perspective is used to focus on the historical and cultural backgroundof the woman’s experiences. Based on the perspective, the research questions refer to: 1) the application of womansinger’s knowledge and cultural perception in songs reproduction so that she can (re)construct her subjectivity; and2) the intention of woman singer to use Western classical music or seriosa in music performance. The life historymethod is used to understand all the subjective experiences of woman singer based on her perspective. The fi ndingsof this research are: 1) subjectivity (re)construction of a woman singer is depend on her knowledge and culturalperception so that her subjectivity is differ from others; and 2) the difference that a woman singer do in musicperformance is related to her intention, i.e. to struggle a music genre that she loves since in the early of her life.


2011 ◽  
Vol 64 (11) ◽  
pp. 2153-2167 ◽  
Author(s):  
Janeen D. Loehr ◽  
Caroline Palmer

Many common behaviours require people to coordinate the timing of their actions with the timing of others' actions. We examined whether representations of musicians' actions are activated in coperformers with whom they must coordinate their actions in time and whether coperformers simulate each other's actions using their own motor systems during temporal coordination. Pianists performed right-hand melodies along with simple or complex left-hand accompaniments produced by themselves or by another pianist. Individual performers' preferred performance rates were measured in solo performance of the right-hand melody. The complexity of the left-hand accompaniment influenced the temporal grouping structure of the right-hand melody in the same way when it was performed by the self or by the duet partner, providing some support for the action corepresentation hypothesis. In contrast, accompaniment complexity had little influence on temporal coordination measures (asynchronies and cross-correlations between parts). Temporal coordination measures were influenced by a priori similarities between partners' preferred rates; partners who had similar preferred rates in solo performance were better synchronized and showed mutual adaptation to each other's timing during duet performances. These findings extend previous findings of action corepresentation and action simulation to a task that requires precise temporal coordination of independent yet simultaneous actions.


2012 ◽  
Vol 108 (8) ◽  
pp. 2115-2133 ◽  
Author(s):  
Shawn D. Burton ◽  
G. Bard Ermentrout ◽  
Nathaniel N. Urban

Synchronous neural oscillations are found throughout the brain and are thought to contribute to neural coding and the propagation of activity. Several proposed mechanisms of synchronization have gained support through combined theoretical and experimental investigation, including mechanisms based on coupling and correlated input. Here, we ask how correlation-induced synchrony is affected by physiological heterogeneity across neurons. To address this question, we examined cell-to-cell differences in phase-response curves (PRCs), which characterize the response of periodically firing neurons to weak perturbations. Using acute slice electrophysiology, we measured PRCs across a single class of principal neurons capable of sensory-evoked oscillations in vivo: the olfactory bulb mitral cells (MCs). Periodically firing MCs displayed a broad range of PRCs, each of which was well fit by a simple three-parameter model. MCs also displayed differences in firing rate-current relationships and in preferred firing rate ranges. Both the observed PRC heterogeneity and moderate firing rate differences (∼10 Hz) separately reduced the maximum correlation-induced synchrony between MCs by up to 25–30%. Simulations further demonstrated that these components of heterogeneity alone were sufficient to account for the difference in synchronization among heterogeneous vs. homogeneous populations in vitro. Within this simulation framework, independent modulation of specific PRC features additionally revealed which aspects of PRC heterogeneity most strongly impact correlation-induced synchronization. Finally, we demonstrated good agreement of novel mathematical theory with our experimental and simulation results, providing a theoretical basis for the influence of heterogeneity on correlation-induced neural synchronization.


2022 ◽  
Author(s):  
Sayak Bhattacharya ◽  
Jacob A Donoghue ◽  
Meredith Mahnke ◽  
Scott L Brincat ◽  
Emery N. Brown ◽  
...  

Oscillatory dynamics in cortex seem to organize into traveling waves that serve a variety of functions. Recent studies show that propofol, a widely used anesthetic, dramatically alters cortical oscillations by increasing slow-delta oscillatory power and coherence. It is not known how this affects traveling waves. We compared traveling waves across the cortex of non-human primates (NHPs) before, during, and after propofol-induced loss-of-consciousness (LOC). After LOC, traveling waves in the slow-delta (~ 1Hz) range increased, grew more organized, and travelled in different directions relative to the awake state. Higher frequency (8-30 Hz) traveling waves, by contrast, decreased, lost structure, and switched to directions where the slow-delta waves were less frequent. The results suggest that LOC may be due, in part, to changes in slow-delta traveling waves that, in turn, alter and disrupt traveling waves in the higher frequencies associated with cognition.


2020 ◽  
Author(s):  
Iran R Roman ◽  
Adrian S Roman ◽  
Edward W. Large

3.1AbstractMusic has a tempo (or frequency of the underlying beat) that musicians maintain throughout a performance. Musicians maintain this musical tempo on their own or paced by a metronome. Behavioral studies have found that each musician shows a spontaneous rate of movement, called spontaneous motor tempo (SMT), which can be measured when a musician spontaneously plays a simple melody. Data shows that a musician’s SMT systematically influences how actions align with the musical tempo. In this study we present a model that captures this phenomenon. To develop our model, we review the results from three musical performance settings that have been previously published: (1) solo musical performance with a pacing metronome tempo that is different from the SMT, (2) solo musical performance without a metronome at a spontaneous tempo that is faster or slower than the SMT, and (3) duet musical performance between musician pairs with matching and mismatching SMTs. In the first setting, the asynchrony between the pacing metronome and the musician’s tempo grew as a function of the difference between the metronome tempo and the musician’s SMT. In the second setting, musicians drifted away from the initial spontaneous tempo toward the SMT. And in the third setting, the absolute asynchronies between performing musicians were smaller if their SMTs matched compared to when they did not. Based on these previous observations, we hypothesize that, while musicians can perform musical actions at a tempo different from their SMT, the SMT constantly acts as a pulling force. We developed a model to test our hypothesis. The model is an oscillatory dynamical system with Hebbian and elastic tempo learning that simulates music performance. We simulate an individual’s SMT with the dynamical system’s natural frequency. Hebbian learning lets the system’s frequency adapt to match the stimulus frequency. The pulling force is simulated with an elasticity term that pulls the learned frequency toward the system’s natural frequency. We used this model to simulate the three music performance settings, replicating behavioral results. Our model also lets us make predictions of musician’s performance not yet tested. The present study offers a dynamical explanation of how an individual’s SMT affects adaptive synchronization in realistic musical performance.


Behaviour ◽  
1968 ◽  
Vol 31 (3-4) ◽  
pp. 203-259 ◽  
Author(s):  
Kenneth C. Shaw

Abstract1. Males of the true katydid, Pterophylla camellifolia F., produce three kinds of acoustical signals termed calling (which can be subdivided into solo calling and alternating calling), aggressive, and disturbance sounds. Alternating calling and aggressive sounds are specialized phonoresponses consisting of regular, rhythmic alternation of chirps by adjacent males at rates slower than solo calling. The arhythmic disturbance sounds are elicited by handling. 2. The nature of alternation was investigated by analyzing changes in chirp lengths and interval lengths of males responding to chirps of other males and to electronically-produced imitations of their chirps for which rate, duration, and intensity was varied. 3. During alternating calling and aggressive sounds, a katydid's chirp rate is slowed because of delay or inhibition by the chirp of another katydid or imitation chirp. Katydids are refractory to delay until the acoustical stimulus extends to the point at which a katydid would chirp if not delayed. From this point to the point of maximum delay (the alternation period), limited by the length of the stimulus and the solo rate of the katydid, increase in the interval between the stimulus and the previous katydid chirp results in a relatively constant interval between the stimulus and the following katydid chirp. During alternating calling, the chirps of one katydid extend beyond the refractory period of the other katydid so that the intervals between successive chirps remain relatively constant. 4. Acoustical interaction between two katydids consists essentially of: 1) entrainment of each katydid at a slower rate because of inhibition by the acoustical stimulus (chirp of the other katydid), and 2) intermittent "escapes" from entrainment (solos). The katydid with the faster spontaneous rate (the leader) is responsible for almost all solos; response by the katydid with the slower spontaneous rate (the follower) eventually entrains (slows) the leader and alternation is resumed. 5. Excitation is as much an integral part of the alternation phonoresponse as is inhibition. Post-inhibitory excitation is apparently responsible for the following: i) katydids soloing faster following than prior to alternation, 2) increase in chirp length following delay by an acoustical stimulus, 3) katydids chirping only in response to an "inhibitory" acoustical stimulus, and 4) reduction in the difference between the solo (spontaneous) rates of two alternating katydids. 6. Increasing the interval between a katydid's chirp and a succeeding stimulus chirp not only increases the extent of delay, it also increases the probability that the next chirp will be one pulse longer. Shortening of a chirp by one pulse occurs most frequently when a katydid's chirp begins before the end, or within a few hundredths of a second after the end, of the stimulus chirp. Under these conditions, shortening of chirp length occurs whether or not the katydid's chirp rate has been slowed. Acoustically-generated nervous signals must partially inhibit nervous output to the wing muscles even though there may be no effect on chirp rate. 7. An increase in the length of electronic stimulus chirps causes an equivalent decrease in katydid chirp rate. Increase in the period of inhibition also results in an increase in post-inhibitory excitation expressed in the following ways: i) increase in solo rate, 2) shortening of intervals between alternated chirps, and 3) to some extent for some katydids, an increase in frequency of longer chirps. 8. The aggressive sound, which occurs at inter-katydid distances of from one to seven feet (sound intensities of 69 to 80 dB), is characterized by a one- to six-pulse increase in chirp length and up to a 50% decrease in intervals between solo chirps. Increasing the intensity of imitation (electronic) stimulus chirps above a threshold value of approximately 65 dB has little or no effect on a katydid's acoustical response. Increasing the length of electronic stimulus chirps causes either no change or no more than a one-pulse increase in katydid chirp length and no more than a 25% decrease in intervals between solo chirps. It is suggested that non-acoustical stimuli may be responsible for release of the aggressive sound. 9. Most of the acoustical behavior of Pterophylla camellifolia males can be understood simply in terms of afferent inhibition of a spontaneously firing neuron ("acoustic pacemaker") and post-inhibitory rebound; this suggests a neuronal mechanism consisting of relatively few neurons. Utilizing information uncovered from the investigation of central nervous system activity in other species of arthropods, some likely properties of the neuronal mechanism controlling katydid phonoresponding are discussed. 10. The nature of alternation of chirps by other tettigoniids suggests that the neuronal mechanism may be similar in all alternating tettigoniids. Differences in the nature of alternation may be related to differences in the chirp-duration-to-chirp-interval ratios and differences in the expression of inhibitory and post-inhibition excitatory processes. 11. The relatively long chirps and short intervals between chirps of P. camellifolia males result in maximal expression of reciprocal inhibitory-excitatory processes which, in turn, may be responsible for the following: i) more katydids chirping more continuously for longer periods of time, and 2) maximum clarity and redundancy of species-specific signals by maintenance of constant response intervals between chirps.


2017 ◽  
Vol 45 (5) ◽  
pp. 713-724 ◽  
Author(s):  
Irune Fernández-Prieto ◽  
Jordi Navarra

High-pitched sounds generate larger neural responses than low-pitched sounds. We investigated whether this neural difference has implications, at cognitive level, for the “vertical” representation of pitch. Participants performed a speeded detection of visual targets that could appear at one of four different spatial positions. Rising or falling frequency sweeps were randomly presented before the visual target. Faster reaction times to visual targets appearing above (but not below) a central fixation point were observed after the presentation of rising frequencies. No significant effects were found for falling frequency sweeps and visual targets presented below fixation point. These results suggest that the difference in the level of arousal between rising and falling frequencies influences their capacity for generating spatial representations. The fact that no difference was found, in terms of crossmodal effects, between the two upper positions may indicate that this “spatial representation of pitch” is not specific for any particular spatial location but rather has a widespread influence over stimuli appearing in the upper visual field. The present findings are relevant for the study of music performance, the design of musical instruments, and research in areas where visual and auditory stimuli with certain complexity are combined (music in advertisements, movies, etc.).


2011 ◽  
Vol 37 (4) ◽  
pp. 1292-1309 ◽  
Author(s):  
Janeen D. Loehr ◽  
Edward W. Large ◽  
Caroline Palmer

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5213
Author(s):  
Congying He ◽  
Rupesh Kumar Chikara ◽  
Chia-Lung Yeh ◽  
Li-Wei Ko

Embodied cognitive attention detection is important for many real-world applications, such as monitoring attention in daily driving and studying. Exploring how the brain and behavior are influenced by visual sensory inputs becomes a major challenge in the real world. The neural activity of embodied mind cognitive states can be understood through simple symbol experimental design. However, searching for a particular target in the real world is more complicated than during a simple symbol experiment in the laboratory setting. Hence, the development of realistic situations for investigating the neural dynamics of subjects during real-world environments is critical. This study designed a novel military-inspired target detection task for investigating the neural activities of performing embodied cognition tasks in the real-world setting. We adopted independent component analysis (ICA) and electroencephalogram (EEG) dipole source localization methods to study the participant’s event-related potentials (ERPs), event-related spectral perturbation (ERSP), and power spectral density (PSD) during the target detection task using a wireless EEG system, which is more convenient for real-life use. Behavioral results showed that the response time in the congruent condition (582 ms) was shorter than those in the incongruent (666 ms) and nontarget (863 ms) conditions. Regarding the EEG observation, we observed N200-P300 wave activation in the middle occipital lobe and P300-N500 wave activation in the right frontal lobe and left motor cortex, which are associated with attention ERPs. Furthermore, delta (1–4 Hz) and theta (4–7 Hz) band powers in the right frontal lobe, as well as alpha (8–12 Hz) and beta (13–30 Hz) band powers in the left motor cortex were suppressed, whereas the theta (4–7 Hz) band powers in the middle occipital lobe were increased considerably in the attention task. Experimental results showed that the embodied body function influences human mental states and psychological performance under cognition attention tasks. These neural markers will be also feasible to implement in the real-time brain computer interface. Novel findings in this study can be helpful for humans to further understand the interaction between the brain and behavior in multiple target detection conditions in real life.


Sign in / Sign up

Export Citation Format

Share Document