scholarly journals Neural Dynamics of Target Detection via Wireless EEG in Embodied Cognition

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5213
Author(s):  
Congying He ◽  
Rupesh Kumar Chikara ◽  
Chia-Lung Yeh ◽  
Li-Wei Ko

Embodied cognitive attention detection is important for many real-world applications, such as monitoring attention in daily driving and studying. Exploring how the brain and behavior are influenced by visual sensory inputs becomes a major challenge in the real world. The neural activity of embodied mind cognitive states can be understood through simple symbol experimental design. However, searching for a particular target in the real world is more complicated than during a simple symbol experiment in the laboratory setting. Hence, the development of realistic situations for investigating the neural dynamics of subjects during real-world environments is critical. This study designed a novel military-inspired target detection task for investigating the neural activities of performing embodied cognition tasks in the real-world setting. We adopted independent component analysis (ICA) and electroencephalogram (EEG) dipole source localization methods to study the participant’s event-related potentials (ERPs), event-related spectral perturbation (ERSP), and power spectral density (PSD) during the target detection task using a wireless EEG system, which is more convenient for real-life use. Behavioral results showed that the response time in the congruent condition (582 ms) was shorter than those in the incongruent (666 ms) and nontarget (863 ms) conditions. Regarding the EEG observation, we observed N200-P300 wave activation in the middle occipital lobe and P300-N500 wave activation in the right frontal lobe and left motor cortex, which are associated with attention ERPs. Furthermore, delta (1–4 Hz) and theta (4–7 Hz) band powers in the right frontal lobe, as well as alpha (8–12 Hz) and beta (13–30 Hz) band powers in the left motor cortex were suppressed, whereas the theta (4–7 Hz) band powers in the middle occipital lobe were increased considerably in the attention task. Experimental results showed that the embodied body function influences human mental states and psychological performance under cognition attention tasks. These neural markers will be also feasible to implement in the real-time brain computer interface. Novel findings in this study can be helpful for humans to further understand the interaction between the brain and behavior in multiple target detection conditions in real life.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph M. Baker ◽  
Ning Liu ◽  
Xu Cui ◽  
Pascal Vrticka ◽  
Manish Saggar ◽  
...  

Abstract Researchers from multiple fields have sought to understand how sex moderates human social behavior. While over 50 years of research has revealed differences in cooperation behavior of males and females, the underlying neural correlates of these sex differences have not been explained. A missing and fundamental element of this puzzle is an understanding of how the sex composition of an interacting dyad influences the brain and behavior during cooperation. Using fNIRS-based hyperscanning in 111 same- and mixed-sex dyads, we identified significant behavioral and neural sex-related differences in association with a computer-based cooperation task. Dyads containing at least one male demonstrated significantly higher behavioral performance than female/female dyads. Individual males and females showed significant activation in the right frontopolar and right inferior prefrontal cortices, although this activation was greater in females compared to males. Female/female dyad’s exhibited significant inter-brain coherence within the right temporal cortex, while significant coherence in male/male dyads occurred in the right inferior prefrontal cortex. Significant coherence was not observed in mixed-sex dyads. Finally, for same-sex dyads only, task-related inter-brain coherence was positively correlated with cooperation task performance. Our results highlight multiple important and previously undetected influences of sex on concurrent neural and behavioral signatures of cooperation.


2020 ◽  
pp. 174569162091735 ◽  
Author(s):  
Gijs A. Holleman ◽  
Ignace T. C. Hooge ◽  
Chantal Kemner ◽  
Roy S. Hessels

The main thrust of Shamay-Tsoory and Mendelsohn’s ecological approach is that “the use of real-life complex, dynamic, naturalistic stimuli provides a solid basis for understanding brain and behavior” (p. 851). Although we support the overall goal and objectives of Shamay-Tsoory and Mendelsohn’s approach to “real-life” neuroscience, their review refers to the terms “ecological validity” and “representative design” in a manner different from that originally introduced by Egon Brunswik. Our aim is to clarify Brunswik’s original definitions and briefly explain how these concepts pertain to the larger problem of generalizability, not just for history’s sake, but because we believe that a proper understanding of these concepts is important for researchers who want to understand human behavior and the brain in the context of everyday experience, and because Brunswik’s original ideas may contribute to Shamay-Tsoory and Mendelsohn’s ecological approach. Finally, we argue that the popular and often misused concept of “ecological validity” is ill-formed, lacks specificity, and may even undermine the development of theoretically sound and tractable research.


2020 ◽  
Author(s):  
Samuel A. Nastase ◽  
Ariel Goldstein ◽  
Uri Hasson

Naturalistic experimental paradigms in neuroimaging arose from a pressure to test the validity of models we derive from highly-controlled experiments in real-world contexts. In many cases, however, such efforts led to the realization that models developed under particular experimental manipulations failed to capture much variance outside the context of that manipulation. The critique of non-naturalistic experiments is not a recent development; it echoes a persistent and subversive thread in the history of modern psychology. The brain has evolved to guide behavior in a multidimensional world with many interacting variables. The assumption that artificially decoupling and manipulating these variables will lead to a satisfactory understanding of the brain may be untenable. We develop an argument for the primacy of naturalistic paradigms, and point to recent developments in machine learning as an example of the transformative power of relinquishing control. Naturalistic paradigms should not be deployed as an afterthought if we hope to build models of brain and behavior that extend beyond the laboratory into the real world.


1985 ◽  
Vol 30 (12) ◽  
pp. 999-999
Author(s):  
Gerald S. Wasserman

2009 ◽  
Vol 212 (15) ◽  
pp. 2411-2418 ◽  
Author(s):  
K. W. Sockman ◽  
K. G. Salvante ◽  
D. M. Racke ◽  
C. R. Campbell ◽  
B. A. Whitman

2009 ◽  
Vol 106 (17) ◽  
pp. 7203-7208 ◽  
Author(s):  
Pei-Yu Wang ◽  
Anna Protheroe ◽  
Andrew N. Clarkson ◽  
Floriane Imhoff ◽  
Kyoko Koishi ◽  
...  

Many behavioral traits and most brain disorders are common to males and females but are more evident in one sex than the other. The control of these subtle sex-linked biases is largely unstudied and has been presumed to mirror that of the highly dimorphic reproductive nuclei. Sexual dimorphism in the reproductive tract is a product of Müllerian inhibiting substance (MIS), as well as the sex steroids. Males with a genetic deficiency in MIS signaling are sexually males, leading to the presumption that MIS is not a neural regulator. We challenge this presumption by reporting that most immature neurons in mice express the MIS-specific receptor (MISRII) and that male Mis−/− and Misrii−/− mice exhibit subtle feminization of their spinal motor neurons and of their exploratory behavior. Consequently, MIS may be a broad regulator of the subtle sex-linked biases in the nervous system.


2018 ◽  
Vol 133 ◽  
pp. 189-201 ◽  
Author(s):  
Laura Sánchez-Marín ◽  
David Ladrón de Guevara-Miranda ◽  
M. Carmen Mañas-Padilla ◽  
Francisco Alén ◽  
Román D. Moreno-Fernández ◽  
...  

2021 ◽  
pp. 254-267
Author(s):  
John Royce

Good readers evaluate as they go along, open to triggers and alarms which warn that something is not quite right, or that something has not been understood. Evaluation is a vital component of information literacy, a keystone for reading with understanding. It is also a complex, complicated process. Failure to evaluate well may prove expensive. The nature and amount of information on the Internet make evaluation skills ever more necessary. Looking at research studies in reading and in evaluation, real-life problems are suggested for teaching, modelling and discussion, to bring greater awareness to good, and to less good, readers.


Sign in / Sign up

Export Citation Format

Share Document