scholarly journals Revealing Spatial and Temporal Patterns of Cell Death, Glial Proliferation, and Blood-Brain Barrier Dysfunction Around Implanted Intracortical Neural Interfaces

2019 ◽  
Vol 13 ◽  
Author(s):  
Steven M. Wellman ◽  
Lehong Li ◽  
Yalikun Yaxiaer ◽  
Ingrid McNamara ◽  
Takashi D. Y. Kozai
2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Zhezhe Sun ◽  
Mark Nyanzu ◽  
Su Yang ◽  
Xiaohong Zhu ◽  
Kankai Wang ◽  
...  

Background. Traumatic brain injury (TBI) refers to temporary or permanent damage to brain function caused by penetrating objects or blunt force trauma. TBI activates inflammasome-mediated pathways and other cell death pathways to remove inactive and damaged cells, however, they are also harmful to the central nervous system. The newly discovered cell death pattern termed pyroptosis has become an area of interest. It mainly relies on caspase-1-mediated pathways, leading to cell death. Methods. Our research focus is VX765, a known caspase-1 inhibitor which may offer neuroprotection after the process of TBI. We established a controlled cortical impact (CCI) mouse model and then controlled the degree of pyroptosis in TBI with VX765. The effects of caspase-1 inhibition on inflammatory response, pyroptosis, blood-brain barrier (BBB), apoptosis, and microglia activation, in addition to neurological deficits, were investigated. Results. We found that TBI led to NOD-like receptors (NLRs) as well as absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis in the damaged cerebral cortex. VX765 curbed the expressions of indispensable inflammatory subunits (caspase-1 as well as key downstream proinflammatory cytokines such as interleukin- (IL-) 1β and IL-18). It also inhibited gasdermin D (GSDMD) cleavage and apoptosis-associated spot-like protein (ASC) oligomerization in the injured cortex. In addition to the above, VX765 also inhibited the inflammatory activity of the high-mobility cassette -1/Toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-kappa B) pathway. By inhibiting pyroptosis and inflammatory mediator expression, we demonstrated that VX765 can decrease blood-brain barrier (BBB) leakage, apoptosis, and microglia polarization to exhibit its neuroprotective effects. Conclusion. In conclusion, VX765 can counteract neurological damage after TBI by reducing pyroptosis and HMGB1/TLR4/NF-κB pathway activities. VX765 may have a good therapeutic effect on TBI.


Nature ◽  
2020 ◽  
Vol 581 (7806) ◽  
pp. 71-76 ◽  
Author(s):  
Axel Montagne ◽  
Daniel A. Nation ◽  
Abhay P. Sagare ◽  
Giuseppe Barisano ◽  
Melanie D. Sweeney ◽  
...  

Shock ◽  
2019 ◽  
Vol 51 (5) ◽  
pp. 634-649 ◽  
Author(s):  
Anita C. Randolph ◽  
Satoshi Fukuda ◽  
Koji Ihara ◽  
Perenlei Enkhbaatar ◽  
Maria-Adelaide Micci

Neuroscience ◽  
2017 ◽  
Vol 350 ◽  
pp. 146-157 ◽  
Author(s):  
Takashi Machida ◽  
Shinya Dohgu ◽  
Fuyuko Takata ◽  
Junichi Matsumoto ◽  
Ikuya Kimura ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Antonio Siniscalchi ◽  
Roman Sztajzel ◽  
Sean Murphy ◽  
Giovambattista De Sarro ◽  
Luca Gallelli


Sign in / Sign up

Export Citation Format

Share Document