scholarly journals Multi-Target and Multi-Session Transcranial Direct Current Stimulation in Patients With Prolonged Disorders of Consciousness: A Controlled Study

2021 ◽  
Vol 15 ◽  
Author(s):  
Xu Zhang ◽  
Baohu Liu ◽  
Yuanyuan Li ◽  
Guoping Duan ◽  
Jun Hou ◽  
...  

Objectives: To investigate the effect of multi-session transcranial direct current stimulation (tDCS) over the prefrontal area, left dorsolateral prefrontal cortex (DLPFC), and bilateral fronto-temporo-parietal cortices (FTPCs) in patients with prolonged disorders of consciousness (DOC) and to examine the altered cortical interconnections using non-linear electroencephalography (EEG).Methods: In this open-label controlled study, conventional treatments were implemented in both the control and tDCS groups, together with 80 tDCS sessions only in the tDCS group. The order of tDCS targets was as follows: prefrontal area, left FTPC, right FTPC, and left DLPFC. The Coma Recovery Scale-Revised (CRS-R) and non-linear EEG index were evaluated before and after the treatment. Additionally, the modified Glasgow Outcome Scale (mGOS) was used as a follow-up evaluation at 12 months after the disease onset.Results: The CRS-R improved significantly in both groups after the treatment. However, the CRS-R and mGOS were more significantly improved in the tDCS group than in the control group. Among the cross approximate entropy (C-ApEn) indices, the local CA-PA and CA-FA under the affected painful stimulus condition and all local and remote indices of the unaffected side under the unaffected painful stimulus condition were significantly higher in the tDCS group than in the control group. Multivariate logistic regression analysis revealed that group and type were the main relevant factors based on mGOS improvement. Multivariate linear regression analysis revealed that group, CA-FA, and CU-MTU were the main relevant factors based on CRS-R improvement under the affected painful stimulus conditions, whereas only CU-MTU and CU-FPU were relevant under the unaffected painful stimulus condition.Conclusion: Multi-target and multi-session tDCS could improve the cortical connections between the primary sensorimotor and frontal cortices of the affected hemisphere and the prefrontal-parietal and temporo-parietal associative cortical networks of the unaffected hemisphere. Thus, this tDCS protocol may be used as an add-on treatment for prolonged DOC.

2019 ◽  
Vol 130 (7) ◽  
pp. e115
Author(s):  
Ilya Bakulin ◽  
Alexandra Poydasheva ◽  
Dmitry Lagoda ◽  
Artem Kotov-Smolenskiy ◽  
Anastasia Butkovskaya ◽  
...  

2020 ◽  
Vol 127 (6) ◽  
pp. 953-961 ◽  
Author(s):  
Moussa A. Chalah ◽  
Christina Grigorescu ◽  
Frank Padberg ◽  
Tania Kümpfel ◽  
Ulrich Palm ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mauro Adenzato ◽  
Rosa Manenti ◽  
Elena Gobbi ◽  
Ivan Enrici ◽  
Danila Rusich ◽  
...  

AbstractAging is accompanied by changes in cognitive abilities and a great interest is spreading among researchers about aging impact on social cognition skills, such as the Theory of Mind (ToM). Transcranial direct current stimulation (tDCS) has been used in social cognition studies founding evidence of sex-related different effects on cognitive ToM task in a young people sample. In this randomized, double-blind, sham-controlled study, we applied one active and one sham tDCS session on the medial prefrontal cortex (mPFC) during a cognitive ToM task, including both social (i.e., communicative) and nonsocial (i.e., private) intention attribution conditions, in sixty healthy aging individuals (30 males and 30 females). In half of the participants the anode was positioned over the mPFC, whereas in the other half the cathode was positioned over the mPFC. The results showed that: (i) anodal tDCS over the mPFC led to significant slower reaction times (vs. sham) for social intention attribution task only in female participants; (ii) No effects were found in both females and males during cathodal stimulation. We show for the first time sex-related differences in cognitive ToM abilities in healthy aging, extending previous findings concerning young participants.


Author(s):  
Benjamin Straube ◽  
Bianca M van Kemenade ◽  
Tilo Kircher ◽  
Rasmus Schülke

Abstract Patients with schizophrenia spectrum disorder often demonstrate impairments in action-outcome monitoring. Passivity phenomena and hallucinations, in particular, have been related to impairments of efference copy-based predictions which are relevant for the monitoring of outcomes produced by voluntary action. Frontal transcranial direct current stimulation has been shown to improve action-outcome monitoring in healthy subjects. However, whether transcranial direct current stimulation can improve action monitoring in patients with schizophrenia spectrum disorder remains unknown. We investigated whether transcranial direct current stimulation can improve the detection of temporal action-outcome discrepancies in patients with schizophrenia spectrum disorder. On 4 separate days, we applied sham or left cathodal/right anodal transcranial direct current stimulation in a randomised order to frontal (F3/F4), parietal (CP3/CP4) and frontoparietal (F3/CP4) areas of 19 patients with schizophrenia spectrum disorder and 26 healthy control subjects. Action-outcome monitoring was assessed subsequent to 10 min of sham/transcranial direct current stimulation (1.5 mA). After a self-generated (active) or externally generated (passive) key press, subjects were presented with a visual outcome (a dot on the screen), which was presented after various delays (0–417 ms). Participants had to detect delays between the key press and the visual consequence. Symptom subgroups were explored based on the presence or absence of symptoms related to a paranoid-hallucinatory syndrome. In general, delay-detection performance was impaired in the schizophrenia spectrum disorder compared to the healthy control group. Interaction analyses showed group-specific (schizophrenia spectrum disorder vs healthy control group) and symptom-specific (with/without relevant paranoid-hallucinatory symptoms) transcranial direct current stimulation effects. Post-hoc tests revealed that frontal transcranial direct current stimulation improved the detection of long delays in active conditions and reduced the proportion of false alarms in undelayed trials of the passive condition in patients. The patients with no or few paranoid-hallucinatory symptoms benefited especially from frontal transcranial direct current stimulation in active conditions, while improvement in the patients with paranoid-hallucinatory symptoms was predominantly reflected in reduced false alarm rates in passive conditions. These data provide some first evidence for the potential utility of transcranial direct current stimulation in improving efference copy mechanisms and action-outcome monitoring in schizophrenia spectrum disorder. Current data indicate that improving efference copy-related processes can be especially effective in patients with no or few positive symptoms, while intersensory matching (i.e. task-relevant in passive conditions) could be more susceptible to improvement in patients with paranoid-hallucinatory symptoms.


Sign in / Sign up

Export Citation Format

Share Document