scholarly journals Medial Parabrachial Nucleus Is Essential in Controlling Wakefulness in Rats

2021 ◽  
Vol 15 ◽  
Author(s):  
Qi Xu ◽  
Dian-Ru Wang ◽  
Hui Dong ◽  
Li Chen ◽  
Jun Lu ◽  
...  

Activation of the parabrachial nucleus (PB) in the brainstem induced wakefulness in rats, suggesting which is an important nucleus that controls arousal. However, the sub-regions of PB in regulating sleep-wake cycle is still unclear. Here, we employ chemogenetics and optogenetics strategies and find that activation of the medial part of PB (MPB), but not the lateral part, induces continuous wakefulness for 10 h without sleep rebound in neither sleep amount nor the power spectra. Optogenetic activation of glutamatergic MPB neurons in sleeping rats immediately wake rats mediated by the basal forebrain (BF) and lateral hypothalamus (LH), but not the ventral medial thalamus. Most importantly, chemogenetic inhibition of PB neurons decreases wakefulness for 10 h. Conclusively, these findings indicate that the glutamatergic MPB neurons are essential in controlling wakefulness, and that MPB-BF and MPB-LH pathways are the major neuronal circuits.

2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Ehab M. Elzawawy ◽  
Melad N. Kelada ◽  
Ahmed F. Al Karmouty

Introduction. Submammary adipofascial flap (SMAF) is a valuable option for replacement of the inferior portion of the breast. It is particularly useful for reconstruction of partial mastectomy defects. It is also used to cover breast implants. Most surgeons base this flap cranially on the submammary skin crease, reflecting it back onto the breast. The blood vessels supplying this flap are not well defined, and the harvest of the flap may be compromised due to its uncertain vascularity. The aim of the work was to identify perforator vessels supplying SMAF and define their origin, site, diameter, and length. Materials and Methods. The flap was designed and dissected on both sides in 10 female cadavers. SMAF outline was 10 cm in length and 7 cm in width. The flap was raised carefully from below upwards to identify the perforator vessels supplying it from all directions. These vessels were counted and the following measurements were taken using Vernier caliper: diameter, total length, length inside the flap, and distance below the submammary skin crease. Conclusions. The perforators at the lateral part of the flap took origin from the lateral thoracic, thoracodorsal, and intercostal vessels. They were significantly larger, longer, and of multiple origins than those on the medial part of the flap and this suggests that laterally based flaps will have better blood supply, better viability, and more promising prognosis. Both approaches, medially based and laterally based SMAF, carry a better prognosis and lesser chance for future fat necrosis than the classical cranially based flap.


2019 ◽  
Vol 5 (3) ◽  
pp. eaav1640 ◽  
Author(s):  
Ryan M. Cassidy ◽  
Yungang Lu ◽  
Madhavi Jere ◽  
Jin-Bin Tian ◽  
Yuanzhong Xu ◽  
...  

Animals must consider competing information before deciding to eat: internal signals indicating the desirability of food and external signals indicating the risk involved in eating within a particular environment. The behaviors driven by the former are manifestations of hunger, and the latter, anxiety. The connection between pathologic anxiety and reduced eating in conditions like typical depression and anorexia is well known. Conversely, anti-anxiety drugs such as benzodiazepines increase appetite. Here, we show that GABAergic neurons in the diagonal band of Broca (DBBGABA) are responsive to indications of risk and receive monosynaptic inhibitory input from lateral hypothalamus GABAergic neurons (LHGABA). Activation of this circuit reduces anxiety and causes indiscriminate feeding. We also found that diazepam rapidly reduces DBBGABA activity while inducing indiscriminate feeding. Our study reveals that the LHGABA→DBBGABA neurocircuit overrides anxiogenic environmental cues to allow feeding and that this pathway may underlie the link between eating and anxiety-related disorders.


1988 ◽  
Vol 254 (4) ◽  
pp. E468-E475
Author(s):  
T. Fujiwara ◽  
K. Nagai ◽  
S. Takagi ◽  
H. Nakagawa

Electrical stimulation of the lateral part of the dorsal parabrachial nucleus (PBD) induces hyperglycemia by enhancing glucagon secretion and suppressing insulin secretion in rats. The mechanism of this effect in the light period was examined by use of blockers of the autonomic nervous system. Hexamethonium, a ganglion blocker, and propranolol, a beta-adrenergic blocker, markedly inhibited the hyperglycemic response to stimulation of the lateral part of the PBD (LPBD). In contrast, phenoxybenzamine, an alpha-adrenergic blocker, and atropine methylnitrate, a muscarinic blocker, had no effect. Because previous studies showed that bilateral lesions of the suprachiasmatic nucleus (SCN) eliminated hyperglycemia induced by intracranial injection of 2-deoxy-D-glucose and that blinding largely suppressed the hyperglycemia, the effects of these two treatments on hyperglycemia induced by electrical stimulation of the LPBD were examined. SCN lesions abolished the hyperglycemic response but did not affect the hyperglucagonemic response. Results 4 wk after orbital enucleation were similar to those after SCN lesions. These findings suggest that the SCN and a beta-adrenergic mechanism are involved in the hyperglycemic response to LPBD stimulation.


2015 ◽  
Vol 8 (1) ◽  
pp. 50-57 ◽  
Author(s):  
Kazue Shiozawa ◽  
Manabu Watanabe ◽  
Takashi Ikehara ◽  
Yasushi Matsukiyo ◽  
Yoshinori Kikuchi ◽  
...  

Primary hepatic marginal zone B-cell malignant lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) is extremely rare. We present a case in which a lesion was diagnosed as 2 contiguous tumors (MALT lymphoma and hemangioma) using contrast-enhanced ultrasonography (US) with sonazoid. There has been no previous case of contiguous hepatic MALT lymphoma and hemangioma. The present case was a female with no medical history. We detected a snowman-like appearance, which was a tumor of 15 mm in diameter with hypo- and hyper-echogenicities in the lateral and medial parts, respectively, in the Couinaud's segment (S6) of the liver on US. The tumor appeared as a single lesion with a low-density area in the unenhanced phase and prolonged enhancement in the equilibrium phases on dynamic CT. On MRI, the whole lesion showed a low-intensity signal on T1-weighted imaging, but isointensity in the lateral part and high intensity in the medial part were seen on T2-weighted imaging. On contrast-enhanced US, the lateral hypoechoic region was homogenously hyperenhanced in the early vascular phase, and the contrast medium was washed out after about 30 s; in contrast, the medial hyperechoic region was gradually stained from the margin toward the central region. The tumor showed a defect in both hypo- and hyperechoic regions in the postvascular phase. Hemangioma was suspected for the medial part based on the typical image findings, but the lateral part was not given a diagnosis. Thus, surgical resection was performed. The medial part was a hemangioma, and the lateral part was a MALT lymphoma by histopathological findings.


2021 ◽  
Author(s):  
Christopher H. Chen ◽  
Leannah N. Newman ◽  
Amanda P. Stark ◽  
Katherine E. Bond ◽  
Dawei Zhang ◽  
...  

In addition to its well-known contributions to motor control and motor learning, the cerebellum is involved in language, emotional regulation, anxiety, and affect1-4. We found that suppressing the firing of cerebellar Purkinje cells (PCs) rapidly excites forebrain areas that could contribute to such functions, including the amygdala, basal forebrain, and septum, but that the classic cerebellar outputs, the deep cerebellar nuclei (DCN), do not project to these regions. Here we show that parabrachial nuclei (PBN) neurons that receive direct PC input, project to and influence all of these forebrain regions and many others. Furthermore, the function of this pathway is distinct from the canonical pathway: suppressing PC to PBN activity is aversive, whereas suppressing the PC to DCN pathway is rewarding. Therefore, the PBN pathway allows the cerebellum to influence the entire spectrum of valence, modulate the activity of forebrain regions known to regulate diverse nonmotor behaviors, and may be the substrate for many nonmotor disorders related to cerebellar dysfunction.


1987 ◽  
Vol 3 (3) ◽  
pp. 209-216 ◽  
Author(s):  
Hidetoshi INO ◽  
Katsuya NAGAI ◽  
Tsutomu FUJIWARA ◽  
Mariko YAMANO ◽  
Shinobu INAGAKI ◽  
...  

1987 ◽  
Vol 57 (2) ◽  
pp. 460-480 ◽  
Author(s):  
Y. Sato ◽  
T. Kawasaki

Extracellular unit spikes were recorded in and around the Y-group nucleus in the anesthetized cat. Target (T) neurons of floccular caudal zone inhibition were identified by observing cessation of their spontaneous discharges following stimulation of the floccular caudal zone. The axonal trajectories of the T neurons to the rostral brain stem were studied by observing the antidromic responses of single neurons during systematic tracking with a stimulating microelectrode in the brain stem. The axons of the T neurons pass through a region closely ventral to the lateral part of the brachium conjunctivum (BC), continue rostrally in a region between the BC and the lateral lemniscus, arch medially around the rostral part of the nucleus reticularis tegmenti pontis, cross the midline, continue to the contralateral side by about 1.5 mm lateral from the midline, arch rostrally, run in the central tegmental field on the contralateral side, arch dorsomedially around the caudal pole of the red nucleus, and enter the contralateral oculomotor nucleus (OMN) from the ventrolateral side. In the caudal half of the contralateral OMN, the axons of the T neurons branch out and terminate. The T neurons were exclusively located in the dorsal subdivision of the Y-group nucleus (DY), whereas some were in the medial part of the subnucleus lateralis parvocellularis (SLP, Ref. 12) of the lateral cerebellar nucleus. T neurons were not found in the ventral subdivision of the Y-group nucleus (VY). Differences in neuronal connections between the DY and VY neurons were investigated by observing responses of single neurons to stimulation of the contralateral OMN, the ipsilateral floccular caudal zone, the ipsilateral eighth nerve (i8N), and the contralateral eighth nerve (c8N). Most neurons in the DY and the adjacent medial part of the SLP, receiving inhibitory inputs from the ipsilateral flocculus (exclusively from the caudal zone), project to the contralateral OMN, and about one-half of these neurons receive polysynaptic inputs from the i8N and the c8N. On the other hand, most neurons in the VY receive monosynaptic inputs from the i8N, and some of these neurons project to the ipsilateral flocculus. The neuronal tract via the ventral part of the pontine tegmentum demonstrated in the present experiments is distinct from the classically established vestibulooculomotor tracts via the BC, the medial longitudinal fasciculus, or the ascending tract of Deiters. We call this tract the 'crossing ventral tegmental tract'. Previously, we reported that electrical stimulation of the caudal zone elicited conjugate downward eye movement.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document