scholarly journals Constructing Dynamic Brain Functional Networks via Hyper-Graph Manifold Regularization for Mild Cognitive Impairment Classification

2021 ◽  
Vol 15 ◽  
Author(s):  
Yixin Ji ◽  
Yutao Zhang ◽  
Haifeng Shi ◽  
Zhuqing Jiao ◽  
Shui-Hua Wang ◽  
...  

Brain functional networks (BFNs) constructed via manifold regularization (MR) have emerged as a powerful tool in finding new biomarkers for brain disease diagnosis. However, they only describe the pair-wise relationship between two brain regions, and cannot describe the functional interaction between multiple brain regions, or the high-order relationship, well. To solve this issue, we propose a method to construct dynamic BFNs (DBFNs) via hyper-graph MR (HMR) and employ it to classify mild cognitive impairment (MCI) subjects. First, we construct DBFNs via Pearson’s correlation (PC) method and remodel the PC method as an optimization model. Then, we use k-nearest neighbor (KNN) algorithm to construct the hyper-graph and obtain the hyper-graph manifold regularizer based on the hyper-graph. We introduce the hyper-graph manifold regularizer and the L1-norm regularizer into the PC-based optimization model to optimize DBFNs and obtain the final sparse DBFNs (SDBFNs). Finally, we conduct classification experiments to classify MCI subjects from normal subjects to verify the effectiveness of our method. Experimental results show that the proposed method achieves better classification performance compared with other state-of-the-art methods, and the classification accuracy (ACC), the sensitivity (SEN), the specificity (SPE), and the area under the curve (AUC) reach 82.4946 ± 0.2827%, 77.2473 ± 0.5747%, 87.7419 ± 0.2286%, and 0.9021 ± 0.0007, respectively. This method expands the MR method and DBFNs with more biological significance. It can effectively improve the classification performance of DBFNs for MCI, and has certain reference value for the research and auxiliary diagnosis of Alzheimer’s disease (AD).

Author(s):  
Zhuqing Jiao ◽  
Yixin Ji ◽  
Jiahao Zhang ◽  
Haifeng Shi ◽  
Chuang Wang

Brain functional networks constructed via regularization has been widely used in early mild cognitive impairment (eMCI) classification. However, few methods can properly reflect the similarities and differences of functional connections among different people. Most methods ignore some topological attributes, such as connection strength, which may delete strong functional connections in brain functional networks. To overcome these limitations, we propose a novel method to construct dynamic functional networks (DFN) based on weighted regularization (WR) and tensor low-rank approximation (TLA), and apply it to identify eMCI subjects from normal subjects. First, we introduce the WR term into the DFN construction and obtain WR-based DFNs (WRDFN). Then, we combine the WRDFNs of all subjects into a third-order tensor for TLA processing, and obtain the DFN based on WR and TLA (WRTDFN) of each subject in the tensor. We calculate the weighted-graph local clustering coefficient of each region in each WRTDFN as the effective feature, and use the t-test for feature selection. Finally, we train a linear support vector machine (SVM) classifier to classify the WRTDFNs of all subjects. Experimental results demonstrate that the proposed method can obtain DFNs with the scale-free property, and that the classification accuracy (ACC), the sensitivity (SEN), the specificity (SPE), and the area under curve (AUC) reach 87.0662% ± 0.3202%, 83.4363% ± 0.5076%, 90.6961% ± 0.3250% and 0.9431 ± 0.0023, respectively. We also achieve the best classification results compared with other comparable methods. This work can effectively improve the classification performance of DFNs constructed by existing methods for eMCI and has certain reference value for the early diagnosis of Alzheimer’s disease (AD).


2014 ◽  
Vol 4 (5) ◽  
pp. 312-322 ◽  
Author(s):  
José Angel Pineda-Pardo ◽  
Pilar Garcés ◽  
María Eugenia López ◽  
Sara Aurtenetxe ◽  
Pablo Cuesta ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e53922 ◽  
Author(s):  
Eun Hyun Seo ◽  
Dong Young Lee ◽  
Jong-Min Lee ◽  
Jun-Sung Park ◽  
Bo Kyung Sohn ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Fangmei He ◽  
Yuchen Zhang ◽  
Xiaofeng Wu ◽  
Youjun Li ◽  
Jie Zhao ◽  
...  

Background: Amnestic mild cognitive impairment (aMCI) is the transitional stage between normal aging and Alzheimer’s disease (AD). Some aMCI patients will progress into AD eventually, whereas others will not. If the trajectory of aMCI can be predicted, it would enable early diagnosis and early therapy of AD. Objective: To explore the development trajectory of aMCI patients, we used diffusion tensor imaging to analyze the white matter microstructure changes of patients with different trajectories of aMCI. Methods: We included three groups of subjects:1) aMCI patients who convert to AD (MCI-P); 2) aMCI patients who remain in MCI status (MCI-S); 3) normal controls (NC). We analyzed the fractional anisotropy and mean diffusion rate of brain regions, and we adopted logistic binomial regression model to predicate the development trajectory of aMCI. Results: The fraction anisotropy value is significantly reduced, the mean diffusivity value is significantly increased in the two aMCI patient groups, and the MCI-P patients presented greater changes. Significant changes are mainly located in the cingulum, fornix, hippocampus, and uncinate fasciculus. These changed brain regions significantly correlated with the patient’s Mini-Mental State Examination scores. Conclusion: The study predicted the disease trajectory of different types of aMCI patients based on the characteristic values of the above-mentioned brain regions. The prediction accuracy rate can reach 90.2%, and the microstructure characteristics of the right cingulate band and the right hippocampus may have potential clinical application value to predict the disease trajectory.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yifei Zhang ◽  
Xiaodan Chen ◽  
Xinyuan Liang ◽  
Zhijiang Wang ◽  
Teng Xie ◽  
...  

The topological organization of human brain networks can be mathematically characterized by the connectivity degree distribution of network nodes. However, there is no clear consensus on whether the topological structure of brain networks follows a power law or other probability distributions, and whether it is altered in Alzheimer's disease (AD). Here we employed resting-state functional MRI and graph theory approaches to investigate the fitting of degree distributions of the whole-brain functional networks and seven subnetworks in healthy subjects and individuals with amnestic mild cognitive impairment (aMCI), i.e., the prodromal stage of AD, and whether they are altered and correlated with cognitive performance in patients. Forty-one elderly cognitively healthy controls and 30 aMCI subjects were included. We constructed functional connectivity matrices among brain voxels and examined nodal degree distributions that were fitted by maximum likelihood estimation. In the whole-brain networks and all functional subnetworks, the connectivity degree distributions were fitted better by the Weibull distribution [f(x)~x(β−1)e(−λxβ)] than power law or power law with exponential cutoff. Compared with the healthy control group, the aMCI group showed lower Weibull β parameters (shape factor) in both the whole-brain networks and all seven subnetworks (false-discovery rate-corrected, p < 0.05). These decreases of the Weibull β parameters in the whole-brain networks and all subnetworks except for ventral attention were associated with reduced cognitive performance in individuals with aMCI. Thus, we provided a short-tailed model to capture intrinsic connectivity structure of the human brain functional networks in health and disease.


2021 ◽  
Vol 15 ◽  
Author(s):  
Justine Staal ◽  
Francesco Mattace-Raso ◽  
Hennie A. M. Daniels ◽  
Johannes van der Steen ◽  
Johan J. M. Pel

BackgroundResearch into Alzheimer’s disease has shifted toward the identification of minimally invasive and less time-consuming modalities to define preclinical stages of Alzheimer’s disease.MethodHere, we propose visuomotor network dysfunctions as a potential biomarker in AD and its prodromal stage, mild cognitive impairment with underlying the Alzheimer’s disease pathology. The functionality of this network was tested in terms of timing, accuracy, and speed with goal-directed eye-hand tasks. The predictive power was determined by comparing the classification performance of a zero-rule algorithm (baseline), a decision tree, a support vector machine, and a neural network using functional parameters to classify controls without cognitive disorders, mild cognitive impaired patients, and Alzheimer’s disease patients.ResultsFair to good classification was achieved between controls and patients, controls and mild cognitive impaired patients, and between controls and Alzheimer’s disease patients with the support vector machine (77–82% accuracy, 57–93% sensitivity, 63–90% specificity, 0.74–0.78 area under the curve). Classification between mild cognitive impaired patients and Alzheimer’s disease patients was poor, as no algorithm outperformed the baseline (63% accuracy, 0% sensitivity, 100% specificity, 0.50 area under the curve).Comparison with Existing Method(s)The classification performance found in the present study is comparable to that of the existing CSF and MRI biomarkers.ConclusionThe data suggest that visuomotor network dysfunctions have potential in biomarker research and the proposed eye-hand tasks could add to existing tests to form a clear definition of the preclinical phenotype of AD.


2020 ◽  
Author(s):  
Xiong Jiang ◽  
James H. Howard ◽  
G. Wiliam Rebeck ◽  
R. Scott Turner

ABSTRACTSpatial inhibition of return (IOR) refers to the phenomenon by which individuals are slower to respond to stimuli appearing at a previously cued location compared to un-cued locations. Here we provide evidence supporting that spatial IOR is mildly impaired in individuals with mild cognitive impairment (MCI) or mild Alzheimer’s disease (AD), and the impairment is readily detectable using a novel double cue paradigm. Furthermore, reduced spatial IOR in high-risk healthy older individuals is associated with reduced memory and other neurocognitive task performance, suggesting that the novel double cue spatial IOR paradigm may be useful in detecting MCI and early AD.SIGNIFICANCE STATEMENTNovel double cue spatial inhibition of return (IOR) paradigm revealed a robust effect IOR deficits in individuals with mild cognitive impairment (MCI) or mild Alzheimer’s disease (AD)Spatial IOR effect correlates with memory performance in healthy older adults at a elevated risk of Alzheimer’s disease (with a family history or APOE e4 allele)The data suggests that double cue spatial IOR may be sensitive to detect early AD pathological changes, which may be linked to disease progress at the posterior brain regions (rather than the medial temporal lobe)


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S90
Author(s):  
LL Beason-Held ◽  
I Driscoll ◽  
Y An ◽  
C Davatzikos ◽  
SM Resnick

Sign in / Sign up

Export Citation Format

Share Document