scholarly journals Cerebellar Patterning Defects in Mutant Mice

2021 ◽  
Vol 15 ◽  
Author(s):  
Richard Hawkes

The cerebellar cortex is highly compartmentalized and serves as a remarkable model for pattern formation throughout the brain. In brief, the adult cerebellar cortex is subdivided into five anteroposterior units—transverse zones—and subsequently, each zone is divided into ∼20 parasagittal stripes. Zone-and-stripe pattern formation involves the interplay of two parallel developmental pathways—one for inhibitory neurons, the second for excitatory. In the inhibitory pathway, progenitor cells of the 4th ventricle generate the Purkinje cells and inhibitory interneurons. In the excitatory pathway, progenitor cells in the upper rhombic lip give rise to the external granular layer, and subsequently to the granular layer of the adult. Both the excitatory and inhibitory developmental pathways are spatially patterned and the interactions of the two generate the complex topography of the adult. This review briefly describes the cellular and molecular mechanisms that underly zone-and-stripe development with a particular focus on mutations known to interfere with normal cerebellar development and the light they cast on the mechanisms of pattern formation.

2013 ◽  
Vol 93 (4) ◽  
pp. 1743-1802 ◽  
Author(s):  
Jean-Sébastien Silvestre ◽  
David M. Smadja ◽  
Bernard I. Lévy

After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Piet van Vliet ◽  
Teun P de Boer ◽  
Marcel A van der Heyden ◽  
Joost P Sluijter ◽  
Pieter A Doevendans ◽  
...  

Background: Recently, we have isolated cardiomyocyte progenitor cells (hCMPCs) from human fetal and adult hearts. These cells differentiate into spontaneously beating cardiomyocytes when stimulated with 5-azacytidine. Subsequent stimulation by TGFβ enhances differentiation efficiency to nearly 100%. The underlying molecular mechanisms mediating this cardiomyogenic differentiation are not understood. In skeletal myoblasts, hyperpolarization-mediated activation of calcineurin signaling is crucial for myogenic differentiation. In hCMPCs, whole-cell patch clamp recordings showed a hyperpolarized membrane potential after stimulation with TGFβ or BMP. We hypothesized that hyperpolarization and calcineurin signaling regulate cardiomyogenic differentiation of hCMPCs after TGFβ stimulation. Methods & Results: To test whether hyperpolarization initiates cardiomyogenic differentiation, hyperpolarization was induced by 1) co-culture of hCMPCs with HEK 293 cells overexpressing a Kir2.1GFP fusion protein (KWGF cells) or 2) culture of hCMPCs overnight in medium containing low potassium concentrations. During co-culture, Lucifer Yellow dye injection in KWGF cells spread to neighboring hCMPCs, indicating cellular coupling. This resulted in stable hyperpolarization in hCMPCs, which could be blocked by addition of the gap junction inhibitor halothane. After two weeks, qPCR analysis revealed increased expression of cardiac sarcomeric genes in the hCMPCs in a dose-dependent manner. Induction of hyperpolarization by culturing hCMPCs with low potassium concentrations also resulted in increased expression of cardiac genes and the formation of spontaneously beating cells. Immunofluorescence staining revealed striated patterns of troponin I and α-actinin. Interestingly, hyperpolarization also increased intracellular calcium levels in hCMPCs, as measured by ratiometric imaging of indo-1 fluorescence, and, subsequently, a time-dependent increase in NFAT-Luciferase reporter activity, indicating activation of the calcineurin pathway. Conclusion: TGFβ and/or BMP-mediated hyperpolarization of hCMPCs induces calcineurin-mediated cardiomyogenic differentiation.


2003 ◽  
Vol 2 (4) ◽  
pp. 290-299 ◽  
Author(s):  
Frederik Geurts ◽  
Erik De Schutter ◽  
Stéphane Dieudonné

2018 ◽  
Vol 98 (1) ◽  
pp. 98-106 ◽  
Author(s):  
J. Kim ◽  
Y. Ahn ◽  
D. Adasooriya ◽  
E.J. Woo ◽  
H.J. Kim ◽  
...  

Crown shapes in mammalian teeth vary considerably from species to species, and morphological characters in crown shape have been used to identify species. Cusp pattern is one of the characters in crown shape. In the processes governing the formation of cusp pattern, the Shh pathway has been implicated as an important player. Suppression of Shh signaling activity in vitro in explant assays appears to induce supernumerary cusp formation in wild-type tooth germs. However, the in vivo role of Shh signaling in cusp pattern formation and the molecular mechanisms by which Shh regulates cusp patterning are not clear. Here, through in vivo phenotypic analyses of mice in which Shh activity was suppressed and compared with wild-type mice, we characterized differences in the location, number, incidence, and shape of supernumerary cusps in molars at embryonic day 15.5. We found that the distances between cusps were reduced in molars of Shh activity–suppressed mice in vivo. These findings confirm and extend the previous idea that Shh acts as an inhibitor in the reaction-diffusion model for cusp pattern formation by negatively regulating the intercuspal distance. We uncovered a significant reduction of expression level of Sostdc1, which encodes a secreted modulator of Wnt signaling, after suppression of Shh activity. The supernumerary cusp formation in Sostdc1−/− mice and compound Sostdc1 and Lrp mutant mice indicates a strong association between Wnt and Shh signaling pathways in cusp patterning. In further support of this idea, there is a high degree of similarity in the supernumerary cusp patterns of mice lacking Sostdc1 or Shh at embryonic day 15.5. These results suggest that Shh plays an inhibitory role in cusp pattern formation by modulating Wnt signaling through the positive regulation of Sostdc1.


2021 ◽  
Author(s):  
Chao J. Liu ◽  
William Ammon ◽  
Viviana Siless ◽  
Morgan Fogarty ◽  
Ruopeng Wang ◽  
...  

AbstractThe surface of the human cerebellar cortex is much more tightly folded than the cerebral cortex. Volumetric analysis of cerebellar morphometry in magnetic resonance imaging studies suffers from insufficient resolution, and therefore has had limited impact on disease assessment. Automatic serial polarization-sensitive optical coherence tomography (as-PSOCT) is an emerging technique that offers the advantages of microscopic resolution and volumetric reconstruction of large-scale samples. In this study, we reconstructed multiple cubic centimeters of ex vivo human cerebellum tissue using as-PSOCT. The morphometric and optical properties of the cerebellar cortex across five subjects were quantified. While the molecular and granular layers exhibited similar mean thickness in the five subjects, the thickness varied greatly between the crown of the folium and the depth of the fissure in the granular layer within subjects. Layer-specific optical property remained homogenous within individual subjects but showed higher cross-subject variability than layer thickness. High-resolution volumetric morphometry and optical property maps of human cerebellar cortex revealed by as-PSOCT have great potential to advance our understanding of cerebellar function and diseases.HighlightsWe reconstructed cubic centimeters of human cerebellar samples at micrometer resolution in five subjects.Thickness of the granular layer varies greatly between the crowns and depths of cerebellar fissures.Cross-subject variability is higher in optical property than cortical morphology.Our results suggest homogenous cell and myelin density in the cortical layers of human cerebellum despite the highly convoluted folding patterns.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Xianshuang Liu ◽  
Chopp Michael ◽  
Xinli Wang ◽  
Li Zhang ◽  
Yisheng Cui ◽  
...  

Background: Neurogenesis and oligodendrogenesis are associated with functional recovery after stroke. However, the molecules that regulate the generation of new neurons and oligodendrocytes have not been fully investigated. MicroRNAs (miRNAs) post-transcriptionally regulate gene expression. MiR-146a has been reported to regulate the immune response in cells, but the role of miR-146a in neural (NPCs) and oligodendrocyte progenitor cells (OPCs) remains unexplored. Methods and Results: Adult Wistar rats were subjected to right middle cerebral artery occlusion (MCAo). In situ hybridization using locked nucleic acid (LNA)probes against miR-146a showed that stroke considerably increased miR-146a density in the subventricular zone (SVZ, 19 ± 1 vs 6 ± 0.1 area/mm2 in non-MCAo group, p<0.05, n=4/group) and corpus callosum (24 ± 3 vs 8±1 area/mm2 in non-MCAo group) of the ischemic hemisphere. Quantitative RT-PCR also demonstrated a marked upregulation of miR-146a transcript in ischemic NPCs (8.5 fold), suggesting an important role in stroke-induced neurogenesis and oligodendrogenesis. To test its biological function, we over-expressed miR-146a in neural progenitor cells by transfection of miR-146a mimics using nucleofector and found that elevation of miR-146a significantly increased the percentage of Tuj1+ neuroblasts (5 ± 0.3 vs 1 ± 0.2%, p<0.05, n=6/group) and O4+ OPCs (10 ± 1 vs 4 ± 0.4%, p<0.05). Moreover, over-expression of miR-146a in primary cultured OPCs significantly increased several myelin proteins including MBP and PLP, and decreased levels of OPC marker proteins including PDGFRα and NG2, whereas attenuation of miR-146a by siRNA against miR-146a suppressed myelin proteins and augmented OPC marker proteins. Furthermore, miR-146a levels in the OPCs were inversely related to IRAK1 proteins, one of miR-146a target genes. Attenuation of IRAK1 in OPCs substantially increased myelin proteins, indicating that miR-146a mediates oligodendrocyte maturation via targeting IRAK1. Conclusion: Our data provide new insight into molecular mechanisms underlying stroke-induced neurogenesis and oligodendrogenesis by revealing a novel role of miR-146a in NPCs and OPCs, which has potential to be used as a new therapy for neurorecovery after stroke.


2020 ◽  
Vol 21 (19) ◽  
pp. 6996
Author(s):  
Pablo Scharf ◽  
Milena Fronza Broering ◽  
Gustavo Henrique Oliveira da Rocha ◽  
Sandra Helena Poliselli Farsky

Hematopoiesis is a complex and intricate process that aims to replenish blood components in a constant fashion. It is orchestrated mostly by hematopoietic progenitor cells (hematopoietic stem cells (HSCs)) that are capable of self-renewal and differentiation. These cells can originate other cell subtypes that are responsible for maintaining vital functions, mediate innate and adaptive immune responses, provide tissues with oxygen, and control coagulation. Hematopoiesis in adults takes place in the bone marrow, which is endowed with an extensive vasculature conferring an intense flow of cells. A myriad of cell subtypes can be found in the bone marrow at different levels of activation, being also under constant action of an extensive amount of diverse chemical mediators and enzymatic systems. Bone marrow platelets, mature erythrocytes and leukocytes are delivered into the bloodstream readily available to meet body demands. Leukocytes circulate and reach different tissues, returning or not returning to the bloodstream. Senescent leukocytes, specially granulocytes, return to the bone marrow to be phagocytized by macrophages, restarting granulopoiesis. The constant high production and delivery of cells into the bloodstream, alongside the fact that blood cells can also circulate between tissues, makes the hematopoietic system a prime target for toxic agents to act upon, making the understanding of the bone marrow microenvironment vital for both toxicological sciences and risk assessment. Environmental and occupational pollutants, therapeutic molecules, drugs of abuse, and even nutritional status can directly affect progenitor cells at their differentiation and maturation stages, altering behavior and function of blood compounds and resulting in impaired immune responses, anemias, leukemias, and blood coagulation disturbances. This review aims to describe the most recently investigated molecular and cellular toxicity mechanisms of current major environmental pollutants on hematopoiesis in the bone marrow.


Sign in / Sign up

Export Citation Format

Share Document