scholarly journals Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Multi-Parametric MRI Radiomics

2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Zhang ◽  
Zhenyu Shu ◽  
Qin Ye ◽  
Junfa Chen ◽  
Jianguo Zhong ◽  
...  

ObjectivesTo systematically evaluate and compare the predictive capability for microvascular invasion (MVI) in hepatocellular carcinoma (HCC) patients based on radiomics from multi-parametric MRI (mp-MRI) including six sequences when used individually or combined, and to establish and validate the optimal combined model.MethodsA total of 195 patients confirmed HCC were divided into training (n = 136) and validation (n = 59) datasets. All volumes of interest of tumors were respectively segmented on T2-weighted imaging, diffusion-weighted imaging, apparent diffusion coefficient, artery phase, portal venous phase, and delay phase sequences, from which quantitative radiomics features were extracted and analyzed individually or combined. Multivariate logistic regression analyses were undertaken to construct clinical model, respective single-sequence radiomics models, fusion radiomics models based on different sequences and combined model. The accuracy, sensitivity, specificity and area under the receiver operating characteristic curve (AUC) were calculated to evaluate the performance of different models.ResultsAmong nine radiomics models, the model from all sequences performed best with AUCs 0.889 and 0.822 in the training and validation datasets, respectively. The combined model incorporating radiomics from all sequences and effective clinical features achieved satisfactory preoperative prediction of MVI with AUCs 0.901 and 0.840, respectively, and could identify the higher risk population of MVI (P < 0.001). The Delong test manifested significant differences with P < 0.001 in the training dataset and P = 0.005 in the validation dataset between the combined model and clinical model.ConclusionsThe combined model can preoperatively and noninvasively predict MVI in HCC patients and may act as a usefully clinical tool to guide subsequent individualized treatment.

2021 ◽  
Vol 11 ◽  
Author(s):  
Di Zhang ◽  
Qi Wei ◽  
Ge-Ge Wu ◽  
Xian-Ya Zhang ◽  
Wen-Wu Lu ◽  
...  

PurposeThis study aimed to develop a radiomics nomogram based on contrast-enhanced ultrasound (CEUS) for preoperatively assessing microvascular invasion (MVI) in hepatocellular carcinoma (HCC) patients.MethodsA retrospective dataset of 313 HCC patients who underwent CEUS between September 20, 2016 and March 20, 2020 was enrolled in our study. The study population was randomly grouped as a primary dataset of 192 patients and a validation dataset of 121 patients. Radiomics features were extracted from the B-mode (BM), artery phase (AP), portal venous phase (PVP), and delay phase (DP) images of preoperatively acquired CEUS of each patient. After feature selection, the BM, AP, PVP, and DP radiomics scores (Rad-score) were constructed from the primary dataset. The four radiomics scores and clinical factors were used for multivariate logistic regression analysis, and a radiomics nomogram was then developed. We also built a preoperative clinical prediction model for comparison. The performance of the radiomics nomogram was evaluated via calibration, discrimination, and clinical usefulness.ResultsMultivariate analysis indicated that the PVP and DP Rad-score, tumor size, and AFP (alpha-fetoprotein) level were independent risk predictors associated with MVI. The radiomics nomogram incorporating these four predictors revealed a superior discrimination to the clinical model (based on tumor size and AFP level) in the primary dataset (AUC: 0.849 vs. 0.690; p < 0.001) and validation dataset (AUC: 0.788 vs. 0.661; p = 0.008), with a good calibration. Decision curve analysis also confirmed that the radiomics nomogram was clinically useful. Furthermore, the significant improvement of net reclassification index (NRI) and integrated discriminatory improvement (IDI) implied that the PVP and DP radiomics signatures may be very useful biomarkers for MVI prediction in HCC.ConclusionThe CEUS-based radiomics nomogram showed a favorable predictive value for the preoperative identification of MVI in HCC patients and could guide a more appropriate surgical planning.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zongren Ding ◽  
Kongying Lin ◽  
Jun Fu ◽  
Qizhen Huang ◽  
Guoxu Fang ◽  
...  

Abstract Purpose We aimed to develop and validate a radiomics model for differentiating hepatocellular carcinoma (HCC) from focal nodular hyperplasia (FNH) in non-cirrhotic livers using Gd-DTPA contrast-enhanced magnetic resonance imaging (MRI). Methods We retrospectively enrolled 149 HCC and 75 FNH patients treated between May 2015 and May 2019 at our center. Patients were randomly allocated to a training (n=156) and validation set (n=68). In total, 2260 radiomics features were extracted from the arterial phase and portal venous phase of Gd-DTPA contrast-enhanced MRI. Using Max-Relevance and Min-Redundancy, random forest, least absolute shrinkage, and selection operator algorithm for dimensionality reduction, multivariable logistic regression was used to build the radiomics model. A clinical model and combined model were also established. The diagnostic performance of the models was compared. Results Eight radiomics features were chosen for the radiomics model, and four clinical factors (age, sex, HbsAg, and enhancement pattern) were chosen for the clinical model. A combined model was built using the factors from the previous models. The classification accuracy of the combined model differentiated HCC from FNH in both the training and validation sets (0.956 and 0.941, respectively). The area under the receiver operating characteristic curve of the combined model was significantly better than that of the clinical model for both the training (0.984 vs. 0.937, p=0.002) and validation (0.972 vs. 0.903, p=0.032) sets. Conclusions The combined model provided a non-invasive quantitative method for differentiating HCC from FNH in non-cirrhotic liver with high accuracy. Our model may assist clinicians in the clinical decision-making process.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huanhuan Liu ◽  
Hua Ren ◽  
Zengbin Wu ◽  
He Xu ◽  
Shuhai Zhang ◽  
...  

Abstract Background Limited data was available for rapid and accurate detection of COVID-19 using CT-based machine learning model. This study aimed to investigate the value of chest CT radiomics for diagnosing COVID-19 pneumonia compared with clinical model and COVID-19 reporting and data system (CO-RADS), and develop an open-source diagnostic tool with the constructed radiomics model. Methods This study enrolled 115 laboratory-confirmed COVID-19 and 435 non-COVID-19 pneumonia patients (training dataset, n = 379; validation dataset, n = 131; testing dataset, n = 40). Key radiomics features extracted from chest CT images were selected to build a radiomics signature using least absolute shrinkage and selection operator (LASSO) regression. Clinical and clinico-radiomics combined models were constructed. The combined model was further validated in the viral pneumonia cohort, and compared with performance of two radiologists using CO-RADS. The diagnostic performance was assessed by receiver operating characteristics curve (ROC) analysis, calibration curve, and decision curve analysis (DCA). Results Eight radiomics features and 5 clinical variables were selected to construct the combined radiomics model, which outperformed the clinical model in diagnosing COVID-19 pneumonia with an area under the ROC (AUC) of 0.98 and good calibration in the validation cohort. The combined model also performed better in distinguishing COVID-19 from other viral pneumonia with an AUC of 0.93 compared with 0.75 (P = 0.03) for clinical model, and 0.69 (P = 0.008) or 0.82 (P = 0.15) for two trained radiologists using CO-RADS. The sensitivity and specificity of the combined model can be achieved to 0.85 and 0.90. The DCA confirmed the clinical utility of the combined model. An easy-to-use open-source diagnostic tool was developed using the combined model. Conclusions The combined radiomics model outperformed clinical model and CO-RADS for diagnosing COVID-19 pneumonia, which can facilitate more rapid and accurate detection.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yumei Jin ◽  
Mou Li ◽  
Yali Zhao ◽  
Chencui Huang ◽  
Siyun Liu ◽  
...  

ObjectiveTo develop and validate a computed tomography (CT)-based radiomics model for predicting tumor deposits (TDs) preoperatively in patients with rectal cancer (RC).MethodsThis retrospective study enrolled 254 patients with pathologically confirmed RC between December 2017 and December 2019. Patients were divided into a training set (n = 203) and a validation set (n = 51). A large number of radiomics features were extracted from the portal venous phase images of CT. After selecting features with L1-based method, we established Rad-score by using the logistic regression analysis. Furthermore, a combined model incorporating Rad-score and clinical factors was developed and visualized as the nomogram. The models were evaluated by the receiver operating characteristic curve (ROC) analysis and area under the ROC curve (AUC).ResultsOne hundred and seventeen of 254 patients were eventually found to be TDs+. Rad-score and clinical factors including carbohydrate antigen (CA) 19-9, CT-reported T stage (cT), and CT-reported peritumoral nodules (+/-) were significantly different between the TDs+ and TDs- groups (all P < 0.001). These factors were all included in the combined model by the logistic regression analysis (odds ratio = 2.378 for Rad-score, 2.253 for CA19-9, 2.281 for cT, and 4.485 for peritumoral nodules). This model showed good performance to predict TDs in the training and validation cohorts (AUC = 0.830 and 0.832, respectively). Furthermore, the combined model outperformed the clinical model incorporating CA19-9, cT, and peritumoral nodules (+/-) in both training and validation cohorts for predicting TDs preoperatively (AUC = 0.773 and 0.718, P = 0.008 and 0.039).ConclusionsThe combined model incorporating Rad-score and clinical factors could provide a preoperative prediction of TDs and help clinicians guide individualized treatment for RC patients.


2020 ◽  
Author(s):  
Huanhuan Liu ◽  
Hua Ren ◽  
Zengbin Wu ◽  
He Xu ◽  
Shuhai Zhang ◽  
...  

Abstract Background Limited data was available for rapid and accurate detection of COVID-19 using CT-based machine learning model. This study aimed to investigate the value of chest CT radiomics for diagnosing COVID-19 pneumonia compared with clinical model and COVID-19 reporting and data system (CO-RADS), and develop an open-source diagnostic tool with the constructed radiomics model. Methods This study enrolled 115 laboratory-confirmed COVID-19 and 435 non-COVID-19 pneunomia patients (training dataset, n = 379; validation dataset, n = 131; testing dataset, n = 40). Key radiomics features extracted from chest CT images were selected to build a radiomics signature using least absolute shrinkage and selection operator (LASSO) regression. Clinical and clinico-radiomics combined models were constructed. The combined model was further validated in the viral pneumonia cohort, and compared with performance of two radiologists with CO-RADS. The diagnostic performance was assessed by receiver operating characteristics curve (ROC) analysis, calibration curve, and decision curve analysis (DCA). Results Eight radiomics features and 5 clinical variables were selected to construct the combined radiomics model, which outperformed the clinical model in diagnosing COVID-19 pneumonia with an area under the ROC (AUC) of 0.98 and good calibration in the validation cohort. The combined model also performed better in distinguishing COVID-19 from other viral pneumonia with an AUC of 0.93 compared with 0.75 (P = 0.03) for clinical model, and 0.69 (P = 0.008) or 0.82 (P = 0.15) for two trained radiologists using CO-RADS. The sensitivity and specificity of the combined model can be achieved to 0.85 and 0.90. The DCA confirmed the clinical utility of the combined model. An easy-to-use open-source diagnostic tool was developed using the combined model. Conclusions The combined radiomics model outperformed clinical model and CO-RADS for diagnosing COVID-19 pneumonia, which can facilitate more rapid and accurate detection.


2021 ◽  
Author(s):  
Gillian S. Dite ◽  
Nicholas M. Murphy ◽  
Richard Allman

SummaryClinical and genetic risk factors for severe COVID-19 are often considered independently and without knowledge of the magnitudes of their effects on risk. Using SARS-CoV-2 positive participants from the UK Biobank, we developed and validated a clinical and genetic model to predict risk of severe COVID-19. We used multivariable logistic regression on a 70% training dataset and used the remaining 30% for validation. We also validated a previously published prototype model. In the validation dataset, our new model was associated with severe COVID-19 (odds ratio per quintile of risk=1.77, 95% confidence interval [CI]=1.64, 1.90) and had excellent discrimination (area under the receiver operating characteristic curve=0.732, 95% CI=0.708, 0.756). We assessed calibration using logistic regression of the log odds of the risk score, and the new model showed no evidence of over- or under-estimation of risk (α=−0.08; 95% CI=−0.21, 0.05) and no evidence or over- or under-dispersion of risk (β=0.90, 95% CI=0.80, 1.00). Accurate prediction of individual risk is possible and will be important in regions where vaccines are not widely available or where people refuse or are disqualified from vaccination, especially given uncertainty about the extent of infection transmission among vaccinated people and the emergence of SARS-CoV-2 variants of concern.Key resultsAccurate prediction of the risk of severe COVID-19 can inform public heath interventions and empower individuals to make informed choices about their day-to-day activities.Age and sex alone do not accurately predict risk of severe COVID-19.Our clinical and genetic model to predict risk of severe COVID-19 performs extremely well in terms of discrimination and calibration.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yuyan Chen ◽  
Zelong Liu ◽  
Yunxian Mo ◽  
Bin Li ◽  
Qian Zhou ◽  
...  

Objectives: Preoperative prediction of post-hepatectomy liver failure (PHLF) in patients with hepatocellular carcinoma (HCC) is significant for developing appropriate treatment strategies. We aimed to establish a radiomics-based clinical model for preoperative prediction of PHLF in HCC patients using gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI).Methods: A total of 144 HCC patients from two medical centers were included, with 111 patients as the training cohort and 33 patients as the test cohort, respectively. Radiomics features and clinical variables were selected to construct a radiomics model and a clinical model, respectively. A combined logistic regression model, the liver failure (LF) model that incorporated the developed radiomics signature and clinical risk factors was then constructed. The performance of these models was evaluated and compared by plotting the receiver operating characteristic (ROC) curve and calculating the area under the curve (AUC) with 95% confidence interval (CI).Results: The radiomics model showed a higher AUC than the clinical model in the training cohort and the test cohort for predicting PHLF in HCC patients. Moreover, the LF model had the highest AUCs in both cohorts [0.956 (95% CI: 0.955–0.962) and 0.844 (95% CI: 0.833–0.886), respectively], compared with the radiomics model and the clinical model.Conclusions: We evaluated quantitative radiomics features from MRI images and presented an externally validated radiomics-based clinical model, the LF model for the prediction of PHLF in HCC patients, which could assist clinicians in making treatment strategies before surgery.


Sign in / Sign up

Export Citation Format

Share Document