scholarly journals Mitochondrial Ndufa4l2 Enhances Deposition of Lipids and Expression of Ca9 in the TRACK Model of Early Clear Cell Renal Cell Carcinoma

2021 ◽  
Vol 11 ◽  
Author(s):  
Kristian B. Laursen ◽  
Qiuying Chen ◽  
Francesca Khani ◽  
Nabeel Attarwala ◽  
Steve S. Gross ◽  
...  

Mitochondrial dysfunction and aberrant glycolysis are hallmarks of human clear cell renal cell carcinoma (ccRCC). Whereas glycolysis is thoroughly studied, little is known about the mitochondrial contribution to the pathology of ccRCC. Mitochondrial Ndufa4l2 is predictive of poor survival of ccRCC patients, and in kidney cancer cell lines the protein supports proliferation and colony formation. Its role in ccRCC, however, remains enigmatic. We utilized our established ccRCC model, termed Transgenic Cancer of the Kidney (TRACK), to generate a novel genetically engineered mouse model in which dox-regulated expression of an shRNA decreases Ndufa4l2 levels specifically in the renal proximal tubules (PT). This targeted knockdown of Ndufa4l2 reduced the accumulation of neutral renal lipid and was associated with decreased levels of the ccRCC markers carbonic anhydrase 9 (CA9) and Enolase 1 (ENO1). These findings suggest a link between mitochondrial dysregulation (i.e. high levels of Ndufa4l2), lipid accumulation, and the expression of ccRCC markers ENO1 and CA9, and demonstrate that lipid accumulation and ccRCC development can potentially be attenuated by inhibiting Ndufa4l2.

Author(s):  
JungYeon Kim ◽  
Bonne Thompson ◽  
Sungwon Han ◽  
Yair Lotan ◽  
Jeffrey G. McDonald ◽  
...  

2008 ◽  
Vol 5 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Peter Hulick ◽  
Michael Zimmer ◽  
Vitaly Margulis ◽  
Steven Skates ◽  
Maureen Hamel ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bin Gao ◽  
Lijuan Wang ◽  
Na Zhang ◽  
Miaomiao Han ◽  
Yubo Zhang ◽  
...  

Abstract Objective Our study aims to investigate the mechanism of the miR-129-5p/SPN axis in clear cell renal cell carcinoma (ccRCC), providing a novel direction for the targeted therapy of ccRCC. Methods Bioinformatics methods were implemented to find the differentially expressed genes (DEGs) associated with ccRCC from TCGA database. qRT-PCR was performed to detect miR-129-5p and SPN mRNA expression, while western bot was carried out for the detection of protein expression of SPN. Bioinformatics analysis was used to predict the binding sites of miR-129-5p on SPN 3’UTR, while dual-luciferase assay was conducted to verify their binding relationship. CCK-8 assay, colony formation assay, wound healing assay and Transwell assay were employed to measure ccRCC cell proliferative ability, cell formation ability, cell migratory and invasive abilities. Flow cytometry was implemented to assess cell cycle and apoptosis. Results miR-129-5p exhibited a significantly down-regulated expression level in ccRCC, while SPN showed a remarkably up-regulated expression level. Overexpressed miR-129-5p inhibited ccRCC cell proliferative, invasive and migratory capacities while induced cell cycle arrest in G0/G1 phase and promoted cell apoptosis. Dual-luciferase assay confirmed that there was a binding relationship between miR-129-5p and SPN. Moreover, overexpressed miR-129-5p remarkably reduced SPN expression in cancer cells, weakened the promoting effect of SPN on cell proliferation, migration, invasion and cell cycle progress, and led to enhanced cell apoptotic activity. Conclusions Our study proves the regulatory effect of the miR-129-5p/SPN axis in ccRCC, and provides a novel potential target for precise treatment of patients with ccRCC.


2020 ◽  
Author(s):  
Bin Gao ◽  
Lijuan Wang ◽  
Yubo Zhang ◽  
Na Zhang ◽  
Miaomiao Han ◽  
...  

Abstract Objective: Our study aims to investigate the mechanism of the miR-129-5p/SPN axis in clear cell renal cell carcinoma (ccRCC), providing a novel direction for the targeted therapy of ccRCC. Methods: Bioinformatics methods were implemented to find the differentially expressed genes (DEGs) associated with ccRCC from TCGA database. qRT-PCR was performed to detect miR-129-5p and SPN mRNA expression, while western bot was carried out for the detection of protein expression of SPN. Bioinformatics analysis was used to predict the binding sites of miR-129-5p on SPN 3’UTR, while dual-luciferase assay was conducted to verify their binding relationship. CCK-8 assay, colony formation assay, wound healing assay and Transwell assay were employed to measure ccRCC cell proliferative ability, cell formation ability, cell migratory and invasive abilities. Results: miR-129-5p exhibited a significantly down-regulated expression level in ccRCC, while SPN showed a remarkably up-regulated expression level. Overexpressed miR-129-5p inhibited ccRCC cell proliferative, invasive and migratory capacities. Dual-luciferase assay confirmed that there was a binding relationship between miR-129-5p and SPN. Additionally, overexpressing miR-129-5p markedly reduced SPN expression in tumor cells, and attenuated the promoting effect of SPN on cell proliferation, migration and invasion. Conclusion: Our study proves the regulatory effect of the miR-129-5p/SPN axis in ccRCC, and provides a novel potential target for precise treatment of patients with ccRCC.


2021 ◽  
Author(s):  
Bin Gao ◽  
Lijuan Wang ◽  
Yubo Zhang ◽  
Na Zhang ◽  
Miaomiao Han ◽  
...  

Abstract Objective: Our study aims to investigate the mechanism of the miR-129-5p/SPN axis in clear cell renal cell carcinoma (ccRCC), providing a novel direction for the targeted therapy of ccRCC. Methods: Bioinformatics methods were implemented to find the differentially expressed genes (DEGs) associated with ccRCC from TCGA database. qRT-PCR was performed to detect miR-129-5p and SPN mRNA expression, while western bot was carried out for the detection of protein expression of SPN. Bioinformatics analysis was used to predict the binding sites of miR-129-5p on SPN 3’UTR, while dual-luciferase assay was conducted to verify their binding relationship. CCK-8 assay, colony formation assay, wound healing assay and Transwell assay were employed to measure ccRCC cell proliferative ability, cell formation ability, cell migratory and invasive abilities. Flow cytometry was implemented to assess cell cycle and apoptosis. Results: miR-129-5p exhibited a significantly down-regulated expression level in ccRCC, while SPN showed a remarkably up-regulated expression level. Overexpressed miR-129-5p inhibited ccRCC cell proliferative, invasive and migratory capacities while induced cell cycle arrest in G0/G1 phase and promoted cell apoptosis. Dual-luciferase assay confirmed that there was a binding relationship between miR-129-5p and SPN. Moreover, overexpressed miR-129-5p remarkably reduced SPN expression in cancer cells, weakened the promoting effect of SPN on cell proliferation, migration, invasion and cell cycle progress, and led to enhanced cell apoptotic activity.Conclusion: Our study proves the regulatory effect of the miR-129-5p/SPN axis in ccRCC, and provides a novel potential target for precise treatment of patients with ccRCC.


2020 ◽  
Author(s):  
Bin Gao ◽  
Lijuan Wang ◽  
Yubo Zhang ◽  
Na Zhang ◽  
Miaomiao Han ◽  
...  

Abstract Objective: Our study aims to investigate the mechanism of the miR-129-5p/SPN axis in clear cell renal cell carcinoma (ccRCC), providing a novel direction for the targeted therapy of ccRCC. Methods: Bioinformatics methods were implemented to find the differentially expressed genes (DEGs) associated with ccRCC from TCGA database. qRT-PCR was performed to detect miR-129-5p and SPN mRNA expression, while western bot was carried out for the detection of protein expression of SPN. Bioinformatics analysis was used to predict the binding sites of miR-129-5p on SPN 3’UTR, while dual-luciferase assay was conducted to verify their binding relationship. CCK-8 assay, colony formation assay, wound healing assay and Transwell assay were employed to measure ccRCC cell proliferative ability, cell formation ability, cell migratory and invasive abilities.Results: miR-129-5p exhibited a significantly down-regulated expression level in ccRCC, while SPN showed a remarkably up-regulated expression level. Overexpressed miR-129-5p inhibited ccRCC cell proliferative, invasive and migratory capacities. Dual-luciferase assay confirmed that there was a binding relationship between miR-129-5p and SPN. Additionally, overexpressing miR-129-5p markedly reduced SPN expression in tumor cells, and attenuated the promoting effect of SPN on cell proliferation, migration and invasion.Conclusion: Our study proves the regulatory effect of the miR-129-5p/SPN axis in ccRCC, and provides a novel potential target for precise treatment of patients with ccRCC.


Sign in / Sign up

Export Citation Format

Share Document