scholarly journals The GLP-1R Agonist Exendin-4 Attenuates Hyperglycemia-Induced Chemoresistance in Human Endometrial Cancer Cells Through ROS-Mediated Mitochondrial Pathway

2021 ◽  
Vol 11 ◽  
Author(s):  
Yu Zhang ◽  
Juan Cheng ◽  
Jing Li ◽  
Junxian He ◽  
Xiaomao Li ◽  
...  

This study aimed to assess the effects of the antidiabetic drug Exendin-4 (Exe-4), a GLP-1 receptor agonist, on the response of human endometrial cancer cells to chemotherapy under high glucose (HG) conditions. Cell viability was detected using a cell counting kit (CCK)-8. Cell apoptosis and reactive oxygen species (ROS) levels were measured by flow cytometry. Gene expression was evaluated by real-time PCR and immunoblotting. The chemotherapeutic drug cisplatin (DDP) dose-dependently inhibited both human endometrial adenocarcinoma Ishikawa and HEC1B cells, a response reversed by HG. Meanwhile, Exe-4 attenuated hyperglycemia’s effect by elevating intracellular lactate dehydrogenase (LDH) and ROS production. Similarly, DDP-induced elevation of intracellular rhodamine123 was attenuated by HG, and Exe-4 reversed HG’s impact. The chemoresistance genes multidrug resistance-associated protein 1 (MRP1) and P-glycoprotein (Pgp) were upregulated. At the same time, topoisomerase II (TOPO II) was downregulated under HG conditions, suggesting HG-induced chemoresistance. Exe-4 did not significantly influence the above genes. DDP downregulated Bcl-2 and Bcl-XL and upregulated Bax, cytosolic cytochrome c, and PARP under normal glucose (NG) versus HG conditions, and Exe-4 attenuated these effects. Upstream of Bax/Bcl, acetylated P53 was upregulated by DDP and downregulated by HG, whose effect was reversed by Exe-4. DPP treatment significantly induced apoptosis and cell cycle arrest in the S phase under NG, and HG reduced these effects. Prolonged exposure to HG induces DDP chemoresistance in human endometrial cancer cells but is alleviated by Exe-4.

2020 ◽  
Vol 20 ◽  
Author(s):  
En Xu ◽  
Hao Zhu ◽  
Feng Wang ◽  
Ji Miao ◽  
Shangce Du ◽  
...  

: Gastric cancer is one of the most common malignancies worldwide and the third leading cause of cancer-related death. In the present study, we investigated the potential activity of OSI-027, a potent and selective mammalian target of rapamycin complex 1/2 (mTOR1/2) dual inhibitor, alone or in combination with oxaliplatin against gastric cancer cells in vitro. Cell counting kit-8 assays and EdU staining were performed to examine the proliferation of cancer cells. Cell cycle and apoptosis were detected by flow cytometry. Western blot was used to detect the elements of the mTOR pathway and Pgp in gastric cancer cell lines. OSI-027 inhibited the proliferation of MKN-45 and AGS cells by arresting the cell cycle in the G0/G1 phase. At the molecular level, OSI-027 simultaneously blocked mTORC1 and mTORC2 activation, and resulted in the downregulation of phosphor-Akt, phpspho-p70S6k, phosphor-4EBP1, cyclin D1, and cyclin-dependent kinase4 (CDK4). Additionally, OSI-027 also downregulated P-gp, which enhanced oxaliplatin-induced apoptosis and suppressed multidrug resistance. Moreover, OSI-027 exhibited synergistic cytotoxic effects with oxaliplatin in vitro, while a P-gp siRNA knockdown significantly inhibited the synergistic effect. In summary, our results suggest that dual mTORC1/mTORC2 inhibitors (e.g., OSI-027) should be further investigated as a potential valuable treatment for gastric cancer.


2019 ◽  
Vol 15 (5) ◽  
pp. 550-560
Author(s):  
Mateusz D. Tomczyk ◽  
Anna Byczek-Wyrostek ◽  
Klaudia Strama ◽  
Martyna Wawszków ◽  
Przemysław Kasprzycki ◽  
...  

Background: The substituted 1,8-Naphthalimides (1H-benzo[de]isoquinoline-1,3(2H)- diones) are known as DNA intercalators stabilizing DNA-Topoisomerase II complexes. This interaction disrupts the cleavage-relegation equilibrium of Topo II, resulting in formation of broken strands of DNA. Objective: To investigate the influence of type of substituents and substitution positions in 1,8- naphthalimde skeleton on the inhibition of Topoisomerase II activity. Methods: The starting 1,8-naphthalimide were prepared from acenaphthene by introduction of appropriate substituents followed by condensation with ω-hydroxylakylamines of different chain length. The substituents were introduced to 1,8-naphthalimide molecule by nucleophilic substitution of leaving groups like nitro or bromo present in 4 or 4,5- positions using the ω- hydroxylalkylamines. The bioactivity of obtained compounds was examined in model cell lines. Results: Antiproliferative activity of selected compounds against HCT 116 human colon cancer cells, human non-small cell lung cells A549 and non-tumorigenic BEAS-2B human bronchial epithelium cells was examined. Several of investigated compounds exhibit a significant activity (IC50 µM to 7 µM) against model cancer cell lines. It was demonstrated that upon treatment with concentration of 200 µM, all derivatives display Topo II inhibitory activity, which may be compared with activity of Amonafide. Conclusion: The replacement of the nitro groups in the chromophore slightly reduces its anticancer activities, whereas the presence of both nitro group and ω-hydroxylalkylamine chain resulted in seriously increased anticancer activity. Obtained compounds showed Topo II inhibitory activity, moreover, influence of the substitution pattern on the ability to inhibit Topo II activity and cancer cells proliferation was observed.


2000 ◽  
Vol 20 (1) ◽  
pp. 205-212 ◽  
Author(s):  
Spencer B. Gibson ◽  
Ryan Oyer ◽  
Aaron C. Spalding ◽  
Steven M. Anderson ◽  
Gary L. Johnson

ABSTRACT Chemotherapeutic genotoxins induce apoptosis in epithelial-cell-derived cancer cells. The death receptor ligand TRAIL also induces apoptosis in epithelial-cell-derived cancer cells but generally fails to induce apoptosis in nontransformed cells. We show here that the treatment of four different epithelial cell lines with the topoisomerase II inhibitor etoposide in combination with TRAIL (tumor necrosis factor [TNF]-related apoptosis-inducing ligand) induces a synergistic apoptotic response. The mechanism of the synergistic effect results from the etoposide-mediated increase in the expression of the death receptors 4 (DR4) and 5 (DR5). Inhibition of NF-κB activation by expression of kinase-inactive MEK kinase 1(MEKK1) or dominant-negative IκB (ΔIκB) blocked the increase in DR4 and DR5 expression following etoposide treatment. Addition of a soluble decoy DR4 fusion protein (DR4:Fc) to cell cultures reduced the amount of etoposide-induced apoptosis in a dose-dependent manner. The addition of a soluble TNF decoy receptor (TNFR:Fc) was without effect, demonstrating the specificity of DR4 binding ligands in the etoposide-induced apoptosis response. Thus, genotoxin treatment in combination with TRAIL is an effective inducer of epithelial-cell-derived tumor cell apoptosis relative to either treatment alone.


2015 ◽  
Author(s):  
François Fabi ◽  
France-Hélène Joncas ◽  
Sophie Parent ◽  
Valérie Leblanc ◽  
Eric Asselin

2017 ◽  
Vol 13 (4) ◽  
pp. 2847-2851 ◽  
Author(s):  
Christine Dinkic ◽  
Friederike Jahn ◽  
Marek Zygmunt ◽  
Florian Schuetz ◽  
Joachim Rom ◽  
...  

2012 ◽  
Vol 13 (8) ◽  
pp. 3653-3656 ◽  
Author(s):  
Fu-Rong Li ◽  
Feng-Xiu Yu ◽  
Shu-Tong Yao ◽  
Yan-Hong Si ◽  
Wei Zhang ◽  
...  

2019 ◽  
Vol 47 (8) ◽  
pp. 3803-3817
Author(s):  
Jian Kong ◽  
Xiuting He ◽  
Yan Wang ◽  
Jie Li

Objective Aberrant expression of microRNAs is a key regulator of tumorigenesis and progression in endometrial cancer. We assessed the effect of microRNA-29b (miR-29b) on proliferation, chemosensitivity, migration, and invasion of endometrial cancer cells. Methods The proliferation of endometrial cancer cells was examined by water-soluble tetrazolium (WST)-1 assay. The effects of miR-29b on migration and invasion were evaluated by transwell migration and Matrigel invasion assays. Western blotting was used to assess protein expression levels after altered expression of miR-29b. The effect of miR-29b on cisplatin-induced apoptosis was examined by Caspase-Glo 3/7 assay. Results miR-29b inhibited proliferation and decreased migration and invasion of endometrial cancer cells. It also enhanced the sensitivity of endometrial cancer cells to cisplatin and increased cisplatin-induced apoptosis by regulating expression of BAX and Bcl-2. Moreover, miR-29b changed the expression level of phosphatase and tensin homolog (PTEN) and p-AKT by directly binding to the 3′ untranslated region of PTEN. Conclusion miR-29b played important roles in proliferation and progression in endometrial cancer cells by direct regulation of PTEN. It might be used as a biomarker to predict chemotherapy response and prognosis in endometrial cancer.


Sign in / Sign up

Export Citation Format

Share Document