scholarly journals Formononetin Activates the Nrf2/ARE Signaling Pathway Via Sirt1 to Improve Diabetic Renal Fibrosis

2021 ◽  
Vol 11 ◽  
Author(s):  
Kai Zhuang ◽  
Xiyu Jiang ◽  
Renbin Liu ◽  
Cunsi Ye ◽  
Yumei Wang ◽  
...  

Oxidative stress is the main factor responsible for the induction of diabetic renal fibrosis. Thus, improving the state of oxidative stress can effectively prevent the further deterioration of diabetic nephropathy (DN). Previous research has shown that formononetin (FMN), a flavonoid with significant antioxidant activity and Sirt1 activation effect, can improve diabetic renal fibrosis. However, the exact mechanisms underlying the effect of FMN on diabetic renal fibrosis have yet to be elucidated. In this study, we carried out in vivo experiments in a db/db (diabetic) mouse model and demonstrated that FMN activated the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway and improved oxidative stress by increasing levels of sirtuin-1 (Sirt1) protein level in renal tissue. We also found that this process reversed the up-regulation of fibronectin (FN) and intercellular adhesion molecule 1 (ICAM-1) and led to an improvement in renal insufficiency. In vitro results further showed that FMN significantly reversed the upregulation of FN and ICAM-1 in glomerular mesangial cells (GMCs) exposed to high glucose. FMN also promoted the expression of Nrf2 and widened its nuclear distribution. Thus, our data indicated that FMN inhibited hyperglycemia-induced superoxide overproduction by activating the Nrf2/ARE signaling pathway. We also found that FMN up-regulated the expression of Sirt1 and that Sirt1 deficiency could block the activation of the Nrf2/ARE signaling pathway in GMCs induced by high glucose. Finally, we found that Sirt1 deficiency could reverse the down-regulation of FN and ICAM-1 induced by FMN. Collectively, our data demonstrated that FMN up-regulated the expression of Sirt1 to activate the Nrf2/ARE signaling pathway, improved oxidative stress in DN to prevent the progression of renal fibrosis. Therefore, FMN probably represents an efficient therapeutic option of patients with DN.

Oncotarget ◽  
2017 ◽  
Vol 8 (50) ◽  
pp. 87390-87400 ◽  
Author(s):  
Ming Li ◽  
Lijuan Xu ◽  
Guowei Feng ◽  
Yan Zhang ◽  
Xin Wang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Le Zhang ◽  
Qian Dai ◽  
Lanlan Hu ◽  
Hua Yu ◽  
Jing Qiu ◽  
...  

Purpose. Hyperoside, a flavonoid isolated from conventional medicinal herbs, has been demonstrated to exert a significant protective effect in diabetic nephropathy. This study aimed to determine the underlying mechanisms, by which hyperoside inhibits high glucose-(HG-) induced proliferation in mouse renal mesangial cells. Methods. Mouse glomerular mesangial cells line (SV40-MES13) was used to study the inhibitory effect of hyperoside on cell proliferation induced by 30 mM glucose, which was used to simulate a diabetic condition. Viable cell count was assessed using the Cell Counting Kit-8 and by the 5-ethynyl-20-deoxyuridine incorporation assay. The underlying mechanism involving miRNA-34a was further investigated by quantitative RT-PCR and transfection with miRNA-34a agomir. The phosphorylation levels of extracellular signal-regulated kinases (ERKs) and cAMP-response element-binding protein (CREB) were measured by Western blotting. The binding region and the critical binding sites of CREB in the miRNA-34a promoter were investigated by the chromatin immunoprecipitation assay and luciferase reporter assay, respectively. Results. We found that hyperoside could significantly decrease HG-induced proliferation of SV40-MES13 cells in a dose-dependent manner, without causing obvious cell death. In addition, hyperoside inhibited the activation of ERK pathway and phosphorylation of its downstream transcriptional factor CREB, as well as the miRNA-34a expression. We further confirmed that CREB-mediated regulation of miRNA-34a is dependent on the direct binding to specific sites in the promoter region of miRNA-34a. Conclusion. Our cumulative results suggested that hyperoside inhibits the proliferation of SV40-MES13 cells through the suppression of the ERK/CREB/miRNA-34a signaling pathway, which provides new insight to the current investigation on therapeutic strategies for diabetic nephropathy.


2017 ◽  
Vol 45 (07) ◽  
pp. 1441-1457 ◽  
Author(s):  
Lin An ◽  
Mei Zhou ◽  
Faiz M. M. T. Marikar ◽  
Xue-Wen Hu ◽  
Qiu-Yun Miao ◽  
...  

Diabetic nephropathy (DN) is a common cause of chronic kidney disease and end-stage renal disease, which can be triggered by oxidative stress. In this study, we investigated the renoprotective effect of the ethyl acetate extract of Salvia miltiorrhiza (EASM) on DN and examined the underlying molecular mechanism. We observed that EASM treatment attenuated metabolic abnormalities associated with hyperglycemic conditions in the experimental DN model. In streptozotocin (STZ)-induced mice, EASM treatment reduced albuminuria, improved renal function and alleviated the pathological alterations within the glomerulus. To mimic the hyperglycemic conditions in DN patients, we used high glucose (25[Formula: see text]mmol/L) media to stimulate mouse mesangial cells (MMCs), and EASM inhibited high glucose-induced reactive oxygen species. We also observed that EASM enhanced the expression of nuclear factor erythroid-2-related factor 2 (Nrf2), which mediated the anti-oxidant response, and its downstream gene heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) with concomitant decrease of expression of kelch-like ECH-associated protein 1 (keap1) both in vitro and in vivo. Taken together, these results suggest that EASM alleviates the progression of DN and this might be associated with activation of Nrf2.


2015 ◽  
Vol 308 (10) ◽  
pp. F1135-F1145 ◽  
Author(s):  
Yanxia Wang ◽  
Sarika Chaudhari ◽  
Yuezhong Ren ◽  
Rong Ma

The present study was carried out to investigate if hepatic nuclear factor (HNF)4α contributed to the high glucose-induced increase in stromal interacting molecule (STIM)1 protein abundance in glomerular mesangial cells (MCs). Western blot and immunofluorescence experiments showed HNF4α expression in MCs. Knockdown of HNF4α using a small interfering RNA approach significantly increased mRNA expression levels of both STIM1 and Orai1 and protein expression levels of STIM1 in cultured human MCs. Consistently, overexpression of HNF4α reduced expressed STIM1 protein expression in human embryonic kidney-293 cells. Furthermore, high glucose treatment did not significantly change the abundance of HNF4α protein in MCs but significantly attenuated HNF4α binding activity to the Stim1 promoter. Moreover, knockdown of HNF4α significantly augmented store-operated Ca2+ entry, which is known to be gated by STIM1 and has recently been found to be antifibrotic in MCs. In agreement with those results, knockdown of HNF4α significantly attenuated the fibrotic response of high glucose. These results suggest that HNF4α negatively regulates STIM1 transcription in MCs. High glucose increases STIM1 expression levels by impairing HNF4α binding activity to the Stim1 promoter, which subsequently releases Stim1 transcription from HNF4α repression. Since the STIM1-gated store-operated Ca2+ entry pathway in MCs has an antifibrotic effect, inhibition of HNF4α in MCs might be a potential therapeutic option for diabetic kidney disease.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2000
Author(s):  
Mingyeong Kim ◽  
Chiheung Cho ◽  
Changjun Lee ◽  
Bomi Ryu ◽  
Sera Kim ◽  
...  

Advanced glycation end-products (AGEs) such as methylglyoxal (MGO) play a vital role in the pathogenesis of nephropathy, a diabetic complication. In the present study, we evaluated the anti-glycation and renal protective properties of Ishige okamurae extract (IOE) against AGE-induced oxidative stress. HPLC analysis confirmed that bioactive phlorotannins such as diphlorethohydroxycarmalol and ishophloroglucin A are predominantly present in IOE. IOE showed strong anti-glycation activities via inhibition of AGE formation, inhibition of AGE–protein cross-linking, and breaking of AGE–protein cross-links. In addition, in vitro studies using mesangial cells demonstrated that IOE effectively suppressed intracellular reactive oxygen species production, intracellular MGO accumulation, and apoptotic cell death by MGO-induced oxidative stress, in addition to regulating the expression of proteins involved in the receptor for AGEs and nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathways. Therefore, IOE can serve as a natural therapeutic agent for the management of AGE-related nephropathy.


Sign in / Sign up

Export Citation Format

Share Document