Salvia miltiorrhiza Lipophilic Fraction Attenuates Oxidative Stress in Diabetic Nephropathy through Activation of Nuclear Factor Erythroid 2-Related Factor 2

2017 ◽  
Vol 45 (07) ◽  
pp. 1441-1457 ◽  
Author(s):  
Lin An ◽  
Mei Zhou ◽  
Faiz M. M. T. Marikar ◽  
Xue-Wen Hu ◽  
Qiu-Yun Miao ◽  
...  

Diabetic nephropathy (DN) is a common cause of chronic kidney disease and end-stage renal disease, which can be triggered by oxidative stress. In this study, we investigated the renoprotective effect of the ethyl acetate extract of Salvia miltiorrhiza (EASM) on DN and examined the underlying molecular mechanism. We observed that EASM treatment attenuated metabolic abnormalities associated with hyperglycemic conditions in the experimental DN model. In streptozotocin (STZ)-induced mice, EASM treatment reduced albuminuria, improved renal function and alleviated the pathological alterations within the glomerulus. To mimic the hyperglycemic conditions in DN patients, we used high glucose (25[Formula: see text]mmol/L) media to stimulate mouse mesangial cells (MMCs), and EASM inhibited high glucose-induced reactive oxygen species. We also observed that EASM enhanced the expression of nuclear factor erythroid-2-related factor 2 (Nrf2), which mediated the anti-oxidant response, and its downstream gene heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) with concomitant decrease of expression of kelch-like ECH-associated protein 1 (keap1) both in vitro and in vivo. Taken together, these results suggest that EASM alleviates the progression of DN and this might be associated with activation of Nrf2.

2022 ◽  
Vol 12 ◽  
Author(s):  
Xuguang Zhang ◽  
Yuxin Zhang ◽  
Mingyan Zhou ◽  
Yiqiang Xie ◽  
Xiujuan Dong ◽  
...  

(R)-5-hydroxy-1,7-diphenyl-3-heptanone (DPHC) from the natural plant Alpinia officinarum has been reported to have antioxidation and antidiabetic effects. In this study, the therapeutic effect and molecular mechanism of DPHC on type 2 diabetes mellitus (T2DM) were investigated based on the regulation of oxidative stress and insulin resistance (IR) in vivo and in vitro. In vivo, the fasting blood glucose (FBG) level of db/db mice was significantly reduced with improved glucose tolerance and insulin sensitivity after 8 weeks of treatment with DPHC. In vitro, DPHC ameliorated IR because of its increasing glucose consumption and glucose uptake of IR-HepG2 cells induced by high glucose. In addition, in vitro and in vivo experiments showed that DPHC could regulate the antioxidant enzyme levels including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), thereby reducing the occurrence of oxidative stress and improving insulin resistance. Western blotting and polymerase chain reaction results showed that DPHC could promote the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), the heme oxygenase-1 (HO-1), protein kinase B (AKT), and glucose transporter type 4 (GLUT4), and reduced the phosphorylation levels of c-Jun N-terminal kinase (JNK) and insulin receptor substrate-1 (IRS-1) on Ser307 both in vivo and in vitro. These findings verified that DPHC has the potential to relieve oxidative stress and IR to cure T2DM by activating Nrf2/ARE signaling pathway in db/db mice and IR-HepG2 cells.


2021 ◽  
Author(s):  
Ding-Chao Zhu ◽  
Yi-Han Wang ◽  
Jia-Hao Lin ◽  
Zhi-Min Miao ◽  
Jia-Jing Xu ◽  
...  

Osteoarthritis (OA) is a common degenerative joint disease characterized by articular cartilage degeneration and inflammation. Currently, there is hardly any effective treatment for OA due to its complicated pathology and...


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hong Feng ◽  
Junling Gu ◽  
Fang Gou ◽  
Wei Huang ◽  
Chenlin Gao ◽  
...  

While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1β, IL-18, and IL-33, ultimately triggering an inflammatory cascade reaction. This study observed the expression of NLRP3 inflammasome signaling stimulated by high glucose, lipopolysaccharide, and reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine in glomerular mesangial cells, aiming to elucidate the mechanism by which the NLRP3 inflammasome signaling pathway may contribute to diabetic nephropathy. We found that the expression of thioredoxin-interacting protein (TXNIP), NLRP3, and IL-1βwas observed by immunohistochemistry in vivo. Simultaneously, the mRNA and protein levels of TXNIP, NLRP3, procaspase-1, and IL-1βwere significantly induced by high glucose concentration and lipopolysaccharide in a dose-dependent and time-dependent manner in vitro. This induction by both high glucose and lipopolysaccharide was significantly inhibited by N-acetyl-L-cysteine. Our results firstly reveal that high glucose and lipopolysaccharide activate ROS/TXNIP/ NLRP3/IL-1βinflammasome signaling in glomerular mesangial cells, suggesting a mechanism by which inflammation may contribute to the development of diabetic nephropathy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Murphy L. Y. Wan ◽  
Paul C. Turner ◽  
Vanessa A. Co ◽  
M. F. Wang ◽  
Khaled M. A. Amiri ◽  
...  

AbstractExtensive research has revealed the association of continued oxidative stress with chronic inflammation, which could subsequently affect many different chronic diseases. The mycotoxin deoxynivalenol (DON) frequently contaminates cereals crops worldwide, and are a public health concern since DON ingestion may result in persistent intestinal inflammation. There has also been considerable attention over the potential of DON to provoke oxidative stress. In this study, the cytoprotective effect of Schisandrin A (Sch A), one of the most abundant active dibenzocyclooctadiene lignans in the fruit of Schisandra chinensis (Turcz.) Baill (also known as Chinese magnolia-vine), was investigated in HT-29 cells against DON-induced cytotoxicity, oxidative stress and inflammation. Sch A appeared to protect against DON-induced cytotoxicity in HT-29 cells, and significantly lessened the DON-stimulated intracellular reactive oxygen species and nitrogen oxidative species production. Furthermore, Sch A lowered DON-induced catalase, superoxide dismutase and glutathione peroxidase antioxidant enzyme activities but maintains glutathione S transferase activity and glutathione levels. Mechanistic studies suggest that Sch A reduced DON-induced oxidative stress by down-regulating heme oxygenase-1 expression via nuclear factor (erythroid-derived 2)-like 2 signalling pathway. In addition, Sch A decreased the DON-induced cyclooxygenase-2 expression and prostaglandin E2 production and pro-inflammatory cytokine interleukin 8 expression and secretion. This may be mediated by preventing DON-induced translocation of nuclear factor-κB, as well as activation of mitogen-activated protein kinases pathways. In the light of these findings, we concluded that Sch A exerted a cytoprotective role in DON-induced toxicity in vitro, and it would be valuable to examine in vivo effects.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Minghua Zhang ◽  
Liang Feng ◽  
Junfei Gu ◽  
Liang Ma ◽  
Dong Qin ◽  
...  

Oxidative stress (OS) has been regarded as one of the major pathogeneses of diabetic nephropathy (DN) through damaging kidney which is associated with renal cells dysfunction. The aim of this study was to investigate whether Moutan Cortex (MC) could protect kidney function against oxidative stressin vitroorin vivo. The compounds in MC extract were analyzed by HPLC-ESI-MS. High-glucose-fat diet and STZ (30 mg kg−1) were used to induce DN rats model, while 200 μg mL−1AGEs were for HBZY-1 mesangial cell damage. The treatment with MC could significantly increase the activity of SOD, glutathione peroxidase (GSH-PX), and catalase (CAT). However, lipid peroxidation malondialdehyde (MDA) was reduced markedlyin vitroorin vivo. Furthermore, MC decreased markedly the levels of blood glucose, serum creatinine, and urine protein in DN rats. Immunohistochemical assay showed that MC downregulated significantly transforming growth factor beta 2 (TGF-β2) protein expression in renal tissue. Our data provided evidence to support this fact that MC attenuated OS in AGEs-induced mesangial cell dysfunction and also in high-glucose-fat diet and STZ-induced DN rats.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yuna Tong ◽  
Shan Liu ◽  
Rong Gong ◽  
Lei Zhong ◽  
Xingmei Duan ◽  
...  

Diabetes-induced oxidative stress and apoptosis is regarded as a critical role in the pathogenesis of diabetic nephropathy (DN). Treating diabetes-induced kidney damage and renal dysfunction has been thought a promising therapeutic option to attenuate the development and progression of DN. In this study, we investigated the renoprotective effect of ethyl vanillin (EVA), an active analogue of vanillin isolated from vanilla beans, on streptozotocin- (STZ-) induced rat renal injury model and high glucose-induced NRK-52E cell model. The EVA treatment could strongly improve the deterioration of renal function and kidney cell apoptosis in vivo and in vitro. Moreover, treating with EVA significantly decreased the level of MDA and reactive oxygen species (ROS) and stabilized antioxidant enzyme system in response to oxidative stress by enhancing the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in vivo and in vitro. Furthermore, EVA also markedly suppressed cleaved caspase-3, Bax, and nuclear transcription factor erythroid 2-related factor (Nrf2) expression in STZ-induced rats. Therefore, these results of our investigation provided that EVA might protect against kidney injury in DN by inhibiting oxidative stress and cell apoptosis.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 247 ◽  
Author(s):  
Bin Zhang ◽  
Xuelian Zhang ◽  
Chenyang Zhang ◽  
Qiang Shen ◽  
Guibo Sun ◽  
...  

Diabetic nephropathy (DN) is a leading cause of end-stage renal failure, and no effective treatment is available. Notoginsenoside R1 (NGR1) is a novel saponin that is derived from Panax notoginseng, and our previous studies showed the cardioprotective and neuroprotective effects of NGR1. However, its role in protecting against DN remains unexplored. Herein, we established an experimental model in db/db mice and HK-2 cells exposed to advanced glycation end products (AGEs). The in vivo investigation showed that NGR1 treatment increased serum lipid, β2-microglobulin, serum creatinine, and blood urea nitrogen levels of db/db mice. NGR1 attenuated histological abnormalities of kidney, as evidenced by reducing the glomerular volume and fibrosis in diabetic kidneys. In vitro, NGR1 treatment was further found to decrease AGE-induced mitochondria injury, limit an increase in reactive oxygen species (ROS), and reduce apoptosis in HK-2 cells. Mechanistically, NGR1 promoted nucleus nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions to eliminate ROS that induced apoptosis and transforming growth factor beta (TGF-β) signaling. In summary, these observations demonstrate that NGR1 exerts renoprotective effects against DN through the inhibition of apoptosis and renal fibrosis caused by oxidative stress. NGR1 might be a potential therapeutic medicine for the treatment of DN.


2008 ◽  
Vol 295 (6) ◽  
pp. F1817-F1824 ◽  
Author(s):  
Federica Barutta ◽  
Silvia Pinach ◽  
Sara Giunti ◽  
Ferdinando Vittone ◽  
Josephine M. Forbes ◽  
...  

Heat shock protein (HSP) HSP27, HSP60, HSP70, and HSP90 are induced by cellular stresses and play a key role in cytoprotection. Both hyperglycemia and glomerular hypertension are crucial determinants in the pathogenesis of diabetic nephropathy and impose cellular stresses on renal target cells. We studied both the expression and the phosphorylation state of HSP27, HSP60, HSP70, and HSP90 in vivo in rats made diabetic with streptozotocin and in vitro in mesangial cells and podocytes exposed to either high glucose or mechanical stretch. Diabetic and control animals were studied 4, 12, and 24 wk after the onset of diabetes. Immunohistochemical analysis revealed an overexpression of HSP25, HSP60, and HSP72 in the diabetic outer medulla, whereas no differences were seen in the glomeruli. Similarly, exposure neither to high glucose nor to stretch altered HSP expression in mesangial cells and podocytes. By contrast, the phosphorylated form of HSP27 was enhanced in the glomerular podocytes of diabetic animals, and in vitro exposure of podocytes to stretch induced HSP27 phosphorylation via a P38-dependent mechanism. In conclusion, diabetes and diabetes-related insults differentially modulate HSP27, HSP60, and HSP70 expression/phosphorylation in the glomeruli and in the medulla, and this may affect the ability of renal cells to mount an effective cytoprotective response.


2020 ◽  
Author(s):  
Ada Admin ◽  
Fenfen Peng ◽  
Wangqiu Gong ◽  
Shuting Li ◽  
Bohui Yin ◽  
...  

Diabetic nephropathy (DN), a vascular complication of diabetes mellitus, is the leading cause of death in diabetic patients. The contribution of aberrantly expressed circRNAs to diabetic nephropathy <i>in vivo</i> is poorly understood. Integrated comparative circRNA microarray profiling was used to examine the expression of circRNAs in diabetic kidney of db/db mice. We found that circRNA_010383 expression was markedly downregulated in diabetic kidneys, mesangial cells and tubular epithelial cells cultured in high-glucose conditions. circRNA_010383 colocalized with microRNA-135a (miR-135a) and inhibited miR-135a function by directly binding to miR-135a. <i>In vitro,</i> the knockdown of circRNA_010383 promoted the accumulation of extracellular matrix (ECM) proteins <a></a><a>and </a>downregulated the expression of transient receptor potential cation channel, subfamily C, member (TRPC1), which is a target protein of miR-135a. Furthermore, <a></a><a>circRNA_010383 overexpression</a> effectively inhibited the high-glucose-induced accumulation of ECM and increased TRPC1 levels <i>in vitro</i>. More importantly, the kidney-target of circRNA_010383 overexpression inhibited <a></a><a>proteinuria</a> and renal fibrosis in db/db mice. Mechanistically, we identified that a loss of circRNA_010383 promoted proteinuria and renal fibrosis in DN by acting as a sponge for miRNA-135a. This study reveals that circRNA_010383 may be a novel therapeutic target for DN in the future.


2021 ◽  
Vol 11 ◽  
Author(s):  
Renhe Wang ◽  
Haijun Zhao ◽  
Yingyu Zhang ◽  
Hai Zhu ◽  
Qiuju Su ◽  
...  

Renal ischemia–reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and has no effective treatment. Exploring the molecular mechanisms of renal IRI is critical for the prevention of AKI and its evolution to chronic kidney disease and end-stage renal disease. The aim of the present study was to determine the biological function and molecular mechanism of action of miR-92a-3p in tubular epithelial cell (TEC) pyroptosis. We investigated the relationship between nuclear factor-erythroid 2-related factor 1 (Nrf1) and TEC pyroptosis induced by ischemia–reperfusion in vivo and oxygen–glucose deprivation/reoxygenation (OGD/R) in vitro. MicroRNAs (miRNAs) are regulators of gene expression and play a role in the progression of renal IRI. Nrf1 was confirmed as a potential target for miRNA miR-92a-3p. In addition, the inhibition of miR-92a-3p alleviated oxidative stress in vitro and decreased the expression levels of NLRP3, caspase-1, GSDMD-N, IL-1β, and IL-18 in vitro and in vivo. Moreover, Zn-protoporphyrin-IX, an inhibitor of heme oxygenase-1, reduced the protective effect of Nrf1 overexpression on OGD/R-induced TEC oxidative stress and pyroptosis. The results of this study suggest that the inhibition of miR-92a-3p can alleviate TEC oxidative stress and pyroptosis by targeting Nrf1 in renal IRI.


Sign in / Sign up

Export Citation Format

Share Document