scholarly journals Potential Benefits of Antiviral African Medicinal Plants in the Management of Viral Infections: Systematic Review

2021 ◽  
Vol 12 ◽  
Author(s):  
Tamirat Bekele Beressa ◽  
Serawit Deyno ◽  
Andrew G. Mtewa ◽  
Namuli Aidah ◽  
Naasson Tuyiringire ◽  
...  

Background: Viruses cause various human diseases, some of which become pandemic outbreaks. This study synthesized evidence on antiviral medicinal plants in Africa which could potentially be further studied for viral infections including Coronavirus disease 2019 (COVID-19) treatment.Methods: PUBMED, CINAHIL, Scopus, Google Scholar, and Google databases were searched through keywords; antiviral, plant, herb, and Africa were combined using “AND” and “OR”. In-vitro studies, in-vivo studies, or clinical trials on botanical medicine used for the treatment of viruses in Africa were included.Results: Thirty-six studies were included in the evidence synthesis. Three hundred and twenty-eight plants were screened for antiviral activities of which 127 showed noteworthy activities against 25 viral species. These, were Poliovirus (42 plants), HSV (34 plants), Coxsackievirus (16 plants), Rhinovirus (14plants), Influenza (12 plants), Astrovirus (11 plants), SARS-CoV-2 (10 plants), HIV (10 plants), Echovirus (8 plants), Parvovirus (6 plants), Semiliki forest virus (5 plants), Measles virus (5 plants), Hepatitis virus (3 plants), Canine distemper virus (3 plants), Zika virus (2 plants), Vesicular stomatitis virus T2 (2 plants). Feline herpesvirus (FHV-1), Enterovirus, Dengue virus, Ebola virus, Chikungunya virus, Yellow fever virus, Respiratory syncytial virus, Rift Valley fever virus, Human cytomegalovirus each showed sensitivities to one plant.Conclusion: The current study provided a list of African medicinal plants which demonstrated antiviral activities and could potentially be candidates for COVID-19 treatment. However, all studies were preliminary and in vitro screening. Further in vivo studies are required for plant-based management of viral diseases.

2019 ◽  
Vol 13 (1) ◽  
pp. e0007072 ◽  
Author(s):  
Caroline S. de Freitas ◽  
Luiza M. Higa ◽  
Carolina Q. Sacramento ◽  
André C. Ferreira ◽  
Patrícia A. Reis ◽  
...  

2020 ◽  
Vol 10 (5) ◽  
pp. 271-283
Author(s):  
Lin Wang ◽  
Junke Song ◽  
Ailin Liu ◽  
Bin Xiao ◽  
Sha Li ◽  
...  

Abstract Flavonoids are now considered as an indispensable component in a variety of nutraceutical and pharmaceutical applications. Most recent researches have focused on the health aspects of flavonoids for humans. Especially, different flavonoids have been investigated for their potential antiviral activities, and several natural flavonoids exhibited significant antiviral properties both in vitro and in vivo. This review provides a survey of the literature regarding the evidence for antiviral bioactivities of natural flavonoids, highlights the cellular and molecular mechanisms of natural flavonoids on viruses, and presents the details of most reported flavonoids. Meanwhile, future perspectives on therapeutic applications of flavonoids against viral infections were discussed.


2015 ◽  
Vol 89 (17) ◽  
pp. 9124-9127 ◽  
Author(s):  
N. Oreshkova ◽  
L. Spel ◽  
R. P. M. Vloet ◽  
P. J. Wichgers Schreur ◽  
R. J. M. Moormann ◽  
...  

Replicon particles of Rift Valley fever virus, referred to as nonspreading Rift Valley fever virus (NSR), are intrinsically safe and highly immunogenic. Here, we demonstrate that NSR-infected human dendritic cells can activate CD8+T cellsin vitroand that prophylactic and therapeutic vaccinations of mice with NSR encoding a tumor-associated CD8 peptide can control the outgrowth of lymphoma cellsin vivo. These results suggest that the NSR system holds promise for cancer immunotherapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shea N. Gardner ◽  
Crystal J. Jaing ◽  
Maher M. Elsheikh ◽  
José Peña ◽  
David A. Hysom ◽  
...  

Background. Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results. A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Each group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions. This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.


2021 ◽  
Author(s):  
Kai Lin ◽  
Steven S Good ◽  
Justin G. Julander ◽  
Abbie Weight ◽  
Adel Moussa

Yellow fever virus (YFV) is a zoonotic pathogen re-emerging in parts of the world, causing a viral hemorrhagic fever associated with high mortality rates. While an effective vaccine is available, having an effective antiviral against YFV is critical against unexpected outbreaks, or when vaccination is not recommended. We have previously identified AT-281, the free base of AT-752, an orally available double prodrug of a guanosine nucleotide analog, as a potent inhibitor of YFV in vitro , with a 50% effective concentration (EC 50 ) of 0.31 µM. In hamsters infected with YFV (Jimenez strain), viremia rose about 4 log 10 -fold and serum alanine aminotransferase (ALT) 2-fold compared to sham-infected animals. Treatment with 1000 mg/kg AT-752 for 7 days, initiated 4 h prior to viral challenge, reduced viremia to below the limit of detection by day 4 post infection (pi) and returned ALT to normal levels by day 6 pi. When treatment with AT-752 was initiated 2 days pi, the virus titer and ALT dropped >2 log 10 and 53% by day 4 and 6 pi, respectively. In addition, at 21 days pi, 70 – 100% of the infected animals in the treatment groups survived compared to 0% of the untreated group (p<0.001). Moreover, in vivo formation of the active triphosphate metabolite AT-9010 was measured in the animal tissues, with the highest concentrations in liver and kidney, organs that are vulnerable to the virus. The demonstrated in vivo activity of AT-752 suggests that it is a promising compound for clinical development in the treatment of YFV infection.


2020 ◽  
Vol 8 (1) ◽  
pp. 85 ◽  
Author(s):  
Sarah D’Alessandro ◽  
Diletta Scaccabarozzi ◽  
Lucia Signorini ◽  
Federica Perego ◽  
Denise P. Ilboudo ◽  
...  

In recent decades, drugs used to treat malaria infection have been shown to be beneficial for many other diseases, including viral infections. In particular, they have received special attention due to the lack of effective antiviral drugs against new emerging viruses (i.e., HIV, dengue virus, chikungunya virus, Ebola virus, etc.) or against classic infections due to drug-resistant viral strains (i.e., human cytomegalovirus). Here, we reviewed the in vitro/in vivo and clinical studies conducted to evaluate the antiviral activities of four classes of antimalarial drugs: Artemisinin derivatives, aryl-aminoalcohols, aminoquinolines, and antimicrobial drugs.


Virus Genes ◽  
2009 ◽  
Vol 38 (2) ◽  
pp. 224-231 ◽  
Author(s):  
Carolina C. Pacca ◽  
Adriana A. Severino ◽  
Adriano Mondini ◽  
Paula Rahal ◽  
Solange G. P. D’avila ◽  
...  

2003 ◽  
Vol 60 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Lucy Ono ◽  
Wagner Wollinger ◽  
Iray M Rocco ◽  
Terezinha L.M Coimbra ◽  
Philip A.J Gorin ◽  
...  

2019 ◽  
Vol 35 (1) ◽  
pp. 27-35
Author(s):  
Shamira Tabrejee ◽  
M Mahboob Hossain

Yellow fever virus is a prototype member of the Flaviviridae family causing high fever and jaundice. Though YF 17D vaccine is administered to yellow fever patients, however it can produce adverse effects in immunocompromised, older people and young infants. The aim of this study is to design an epitope-based peptide vaccine by targeting envelope (E) protein of Yellow Fever Virus. Thirty sequences of E protein of Yellow Fever Virus strains were retrieved from NCBI database. E protein was found to be mostly conserved among all the sequences with little variability and also was identified as a probable antigen. Different epitope prediction tools predicted 4 common epitopes, 3 of which were found to be antigenic. A peptide VKNPTDTGin E protein was predicted to have surface accessibility which overlaps with the VKNPTDTGHGT epitope.So, the whole VKNPTDTGHGT epitope was taken for further analysis. The VKNPTDTGHGT epitope showed 96.67% conservancy and also possesses flexibility, hydrophilicity and non-toxicity. Therefore, VKNPTDTGHGT can be regarded as a potential vaccine candidate against Yellow fever virus with further in vitro and in vivo validation. Bangladesh J Microbiol, Volume 35 Number 1 June 2018, pp 27-35


Sign in / Sign up

Export Citation Format

Share Document