scholarly journals The Controversy About the Effects of Different Doses of Corticosteroid Treatment on Clinical Outcomes for Acute Respiratory Distress Syndrome Patients: An Observational Study

2021 ◽  
Vol 12 ◽  
Author(s):  
Jia-Wei Yang ◽  
Ping Jiang ◽  
Wen-Wen Wang ◽  
Zong-Mei Wen ◽  
Bei Mao ◽  
...  

Background: Corticosteroid usage in acute respiratory distress syndrome (ARDS) remains controversial. We aim to explore the correlation between the different doses of corticosteroid administration and the prognosis of ARDS.Methods: All patients were diagnosed with ARDS on initial hospital admission and received systemic corticosteroid treatment for ARDS. The main outcomes were the effects of corticosteroid treatment on clinical parameters and the mortality of ARDS patients. Secondary outcomes were factors associated with the mortality of ARDS patients.Results: 105 ARDS patients were included in this study. Corticosteroid treatment markedly decreased serum interleukin-18 (IL-18) level (424.0 ± 32.19 vs. 290.2 ± 17.14; p = 0.0003) and improved arterial partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2) (174.10 ± 65.28 vs. 255.42 ± 92.49; p < 0.0001). The acute physiology and chronic health evaluation (APACHE II) score (16.15 ± 4.41 vs. 14.88 ± 4.57, p = 0.042) decreased significantly on the seventh day after systemic corticosteroid treatment. Interestingly, the serum IL-18 decreased significantly (304.52 ± 286.00 vs. 85.85 ± 97.22, p < 0.0001), whereas the improvement of PaO2/FiO2 (24.78 ± 35.03 vs. 97.17 ± 44.82, p < 0.001) was inconspicuous after systemic corticosteroid treatment for non-survival patients, compared with survival patients. Furthermore, the receiver operating characteristic (ROC) model revealed, when equivalent methylprednisolone usage was 146.5 mg/d, it had the best sensitivity and specificity to predict the death of ARDS. Survival analysis by Kaplan–Meier curves presented the higher 45-day mortality in high-dose corticosteroid treatment group (logrank test p < 0.0001). Multivariate Cox regression analyses demonstrated that serum IL-18 level, APACHE II score, D-dimer, and high-dose corticosteroid treatment were associated with the death of ARDS.Conclusion: Appropriate dose of corticosteroids may be beneficial for ARDS patients through improving the oxygenation and moderately inhibiting inflammatory response. The benefits and risks should be carefully weighed when using high-dose corticosteroid for ARDS.Trial registration: This work was registered in ClinicalTrials.gov. Name of the registry: Corticosteroid Treatment for Acute Respiratory Distress Syndrome. Trial registration number: NCT02819453. URL of trial registry record: https://register.clinicaltrials.gov.

2010 ◽  
Vol 19 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Chih-Feng Chian ◽  
Chin-Pyng Wu ◽  
Chien-Wen Chen ◽  
Wen-Lin Su ◽  
Chin-Bin Yeh ◽  
...  

No standard protocol exists for the treatment of acute respiratory distress syndrome induced by inhalation of smoke from a smoke bomb. In this case, a 23-year-old man was exposed to smoke from a smoke grenade for approximately 10 to 15 minutes without protective breathing apparatus. Acute respiratory distress syndrome developed subsequently, complicated by bilateral pneumothorax and pneumomediastinum 48 hours after inhalation. Despite mechanical ventilation and bilateral tube thoracostomy, the patient was severely hypoxemic 4 days after hospitalization. His condition improved upon treatment with high-dose corticosteroids, an additional 500-mg dose of methylprednisolone, and the initiation of extracorporeal life support. Arterial oxygenation decreased gradually after abrupt tapering of the corticosteroid dose and discontinuation of the life support. On day 16 of hospitalization, the patient experienced progressive deterioration of arterial oxygenation despite the intensive treatment. The initial treatment regimen (ie, corticosteroids and extracorporeal life support) was resumed, and the patient’s arterial oxygenation improved. The patient survived.


2018 ◽  
Vol 124 (4) ◽  
pp. 899-905 ◽  
Author(s):  
Nathan D. Putz ◽  
Ciara M. Shaver ◽  
Kobina Dufu ◽  
Chien-Ming Li ◽  
Qing Xu ◽  
...  

Acute respiratory distress syndrome (ARDS) is characterized by lung inflammation and pulmonary edema, leading to arterial hypoxemia and death if the hypoxemia is severe. Strategies to correct hypoxemia have the potential to improve clinical outcomes in ARDS. The goal of this study was to evaluate the potential of hemoglobin modification as a novel therapy for ARDS-induced hypoxemia. The therapeutic effect of two different doses of GBT1118, a compound that increases the oxygen affinity of hemoglobin, was evaluated in a murine model of acute lung injury induced by intratracheal LPS instillation 24 h before exposure to 5% or 10% hypoxia ( n = 8–15 per group). As expected, administration of GBT1118 to mice significantly increased the oxygen affinity of hemoglobin. Compared with mice receiving vehicle control, mice treated with GBT1118 had significantly lower mortality after LPS + 5% hypoxia (47% with vehicle vs. 22% with low-dose GBT1118, 13% with high-dose GBT1118, P = 0.032 by log rank) and had reduced severity of illness. Mice treated with GBT1118 showed a sustained significant increase in SpO2 over 4 h of hypoxia exposure. Treatment with GBT1118 did not alter alveolar-capillary permeability, bronchoalveolar lavage (BAL) inflammatory cell counts, or BAL concentrations of IL-1β, TNF-α, or macrophage inflammatory protein-1α. High-dose GBT1118 did not affect histological lung injury but did decrease tissue hypoxia as measured intensity of pimonidazole (Hypoxyprobe) staining in liver ( P = 0.043) and kidney ( P = 0.043). We concluded that increasing the oxygen affinity of hemoglobin using GBT1118 may be a novel therapy for treating hypoxemia associated with acute lung injury. NEW & NOTEWORTHY In this study, we show that GBT1118, a compound that increases hemoglobin affinity for oxygen, improves survival and oxygen saturation in a two-hit lung injury model of intratracheal LPS without causing tissue hypoxia. Modulation of hemoglobin oxygen affinity represents a novel therapeutic approach to treatment of acute lung injury and acute respiratory distress syndrome, conditions characterized by hypoxemia.


2018 ◽  
Vol 7 (8) ◽  
pp. 205 ◽  
Author(s):  
Wan-Ling Chen ◽  
Wei-Ting Lin ◽  
Shu-Chen Kung ◽  
Chih-Cheng Lai ◽  
Chien-Ming Chao

This study aims to investigate the association between oxygenation saturation index (OSI) and the outcome of acute respiratory distress syndrome (ARDS) patients, and assess the predictive performance of OSI for ARDS patients’ mortality. This study was conducted at one regional hospital with 66 adult intensive care unit (ICU) beds. All patients with ARDS were identified between November 1 2016 and May 31 2018, and their clinical information was retrospectively collected. The lowest PaO2/FiO2 ratio and SpO2/FiO2 ratio and highest mean airway pressure (MAP) were recorded on the first day of ARDS; and oxygen index (OI) and OSI were calculated as (FiO2 × MAP × 100)/PaO2, and (FiO2 × MAP × 100) /SpO2 accordingly. During the study period, a total of 101 patients with ARDS were enrolled, and their mean age was 69.2 years. The overall in-ICU and in-hospital mortality rate was 57.4% and 61.4%, respectively. The patients with in-ICU mortality had higher APACHE II score than the survivors (31.6 ± 9.8 vs. 23.0 ± 9.1, p < 0.001). In addition, mortalities had lower SpO2, and SpO2/FiO2 ratios than the survivors (both p < 0.05). In contrast, survivors had lower OI, and OSI than the mortalities (both p = 0.008). Both OSI (area under curve (AUC) = 0.656, p = 0.008) and OI (AUC = 0.654, p = 0.008) had good predictive performance of mortality among ARDS patients using receiver-operating characteristics (ROC) curves analysis. In addition, the AUC of SpO2/FiO2 (AUC = 0.616, p = 0.046) had better performance for mortality prediction than PaO2/FiO2 (AUC = 0.603, p = 0.08). The patients with OSI greater than 12 had a higher risk of mortality than OSI < 12 (adjusted OR, 5.22, 95% CI, 1.31–20.76, p = 0.019). In contrast, OI, PaO2/FiO2, and SpO2/FiO2 were not found to be significantly associated with increased mortality. OSI is significantly associated with the increased mortality of ARDS patients and can also be a good outcome predictor.


2021 ◽  
Vol 8 ◽  
Author(s):  
Takeshi Tanaka ◽  
Masahiko Mori ◽  
Masato Tashiro ◽  
Koichi Izumikawa

Acute respiratory distress syndrome (ARDS) is characterized by dysregulated vascular permeability. The clinical outcomes remain poor, and the disease burden is widespread. We demonstrated that plasma 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, is a pivotal severity indicator of ARDS. Serotonin is an effector of cellular contraction and a modulator of vascular permeability. Plasma 5-HIAA levels were significantly elevated in severe ARDS cases with shock status (p = 0.047) and positively correlated with SOFA (p &lt; 0.0001) and APACHE-II score (p &lt; 0.0001). In the longitudinal analysis, plasma 5-HIAA levels were also a strong independent predictor of mortality rate (p = 0.005). This study indicates that plasma 5-HIAA is a biomarker of ARDS severity and highlights the importance of evaluating vascular leakage levels for ARDS treatment.


2020 ◽  
Vol 130 (12) ◽  
pp. 6417-6428 ◽  
Author(s):  
Jiao Liu ◽  
Sheng Zhang ◽  
Xuan Dong ◽  
Zhongyi Li ◽  
Qianghong Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document