scholarly journals Berberine and Its Main Metabolite Berberrubine Inhibit Platelet Activation Through Suppressing the Class I PI3Kβ/Rasa3/Rap1 Pathway

2021 ◽  
Vol 12 ◽  
Author(s):  
Can Wang ◽  
Yangyang Cheng ◽  
Yuanhui Zhang ◽  
Hongtao Jin ◽  
Zengyan Zuo ◽  
...  

Background: Berberine (BBR), a natural product, was reported to inhibit platelet aggregation; however, the molecular mechanisms remain unclear. This study aims to investigate the effects and mechanisms of BBR in inhibiting platelet activation and thrombus formation.Methods: Flow cytometry, immunofluorescence, and Western blot were used to determine the inhibitory effects and mechanisms of BBR and its main metabolite berberrubine (M2) on platelet activation in vitro and ex vivo. Purified integrin αIIbβ3, class I PI3K kit, and molecular docking were used to identify the possible targets of BBR and M2. A carrageenan-induced mouse thrombosis model was used to evaluate the effects of BBR on thrombus formation in vivo.Results:In vitro, BBR and M2 significantly inhibited ADP-induced integrin αIIbβ3 activation, reduced the level of P-selectin on the platelet membrane, and suppressed the binding of fibrinogen to the platelets. In this process, BBR and M2 greatly suppressed the PI3K/Akt pathway and inhibited Rasa3 membrane translocation and Rap1 activation. Furthermore, BBR and M2 selectively inhibited class I PI3Kβ, perhaps through binding to its active site. The activities of BBR were stronger than those of M2. After oral administration, BBR significantly inhibited the PI3K/Akt pathway and Rap1 activation and suppressed ADP-induced platelet activation and carrageenan-induced thrombosis in mice without prolonging bleeding time.Conclusions: We reveal for the first time the possible targets and mechanisms of BBR and M2 in inhibiting platelet activation. Our research may support the future clinical application of BBR as an antiplatelet drug in the prevention or treatment of thrombotic diseases.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3501-3501
Author(s):  
Jiansong Huang ◽  
Xiaofeng Shi ◽  
Wenda Xi ◽  
Ping Liu ◽  
Xiaodong Xi

Abstract The RGT sequences of the integrin β3 tail directly and constitutively bind the inactive c-Src, regulating integrin αIIbβ3 signaling and platelet function. Previous work has shown that disrupting the interaction of c-Src with β3 via myristoylated RGT peptide or deletion of the RGT sequences in β3 selectively inhibits integrin αIIbβ3 outside-in signaling in platelets. However, the precise molecular mechanisms by which the Src-β3 association regulates integrin αIIbβ3 signaling need to be clarified. We found that active c-Src phosphoylated the Y747 and Y759 residues of β3 directly at the in vitro protein/protein level or in CHO cell models bearing Tac-β3 chimeras, which were devoid of the intact β3 signal transduction. Furthermore, data from mass spectrometry, [γ-32P] ATP incorporation assays and CHO cell/Tac-β3 chimeras demonstrated that the direct phosphorylation of Y747 and Y759 by active c-Src did not depend on the binding of c-Src to the RGT sequences of the β3 tail. To further investigate the biological functions of Src-β3 association in signal transduction we employed a cell-permeable and reduction-sensitive peptide (myr-AC∼CRGT), which disrupted the Src-β3 association in platelets independent of membrane-anchorage, and found that when platelets were stimulated by thrombin the c-Src activation and the phosphorylation of the tyrosine residues of the β3 tail were substantially inhibited by the presence of the peptide. These results suggest that one of the crucial biological functions of Src-β3 association is to serve as a “bridge” linking integrin signaling with the c-Src full activation and phosphorylation of the tyrosines of the β3 tail. To answer whether the RGT peptide binding to Src is able to alter the enzymatic activity of c-Src, we examined the Src-Csk association, the phosphorylation status of Y416 and Y527 of c-Src and the c-Src kinase catalytic activity. Results showed that myr-AC∼CRGT did not dissociate Csk from c-Src in resting platelets and the phosphorylation level of Y416 and Y527 of c-Src remained unaltered. Consistent data were also obtained from in vitro analysis of the c-Src kinase catalytic activity in the presence of CRGT peptide. These results suggest that myr-AC∼CRGT peptide per se does not fully activate c-Src. Myr-AC∼CRGT was also found to inhibit integrin αIIbβ3 outside-in signaling in human platelets. To examine the effect of the myr-AC∼CRGT on platelet adhesion and aggregation under flow conditions, we measured the platelet thrombus formation under different shear rates. Myr-AC∼CRGT did not affect the platelet adhesion at a wall shear rate of 125 s-1. The inability of myr-AC∼CRGT to affect platelet adhesion and aggregation remained at 500 s-1 shear rates. At 1,500 s-1, or 5,000 s-1 rates, myr-AC∼CRGT partially inhibited platelet adhesion and aggregation. These observations indicate that the Src-regulated outside-in signaling plays a pivotal role in the stable thrombus formation and the thrombus growth under flow conditions. The present study reveals novel insights into the molecular mechanisms by which c-Src regulates integrin αIIbβ3 signaling, particularly the phorsphorylation of the β3 cytoplasmic tyrosines, and provides first evidence in human platelets that the RGT peptide or derivatives regulate thrombus formation through dissociating the Src-β3 interaction. The data of this work allow us to anticipate that intracellular delivery of the RGT peptide or its analogues may have potential in the development of a new antithrombotic strategy where only the Src-β3 interaction is specifically interrupted so as to provide an effective inhibition on thrombosis together with a decent hemostasis. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Lulu Han ◽  
Yutong Miao ◽  
Yang Zhao ◽  
Xingzhong Zhang ◽  
Xiaolong Ma ◽  
...  

Hyperhomocysteinemia (HHcy) is associated with an exaggerated platelet thrombotic response at sites of vascular injury. Here, a human medical examination report showed that elevated human plasma Hcy levels were positively correlated with enhanced blood coagulation and platelet activity, suggesting that humans with HHcy are more prone to thrombus formation at the sites of vascular injury. Accordingly, we observed accelerated platelet activation, primary hemostasis, and thrombus formation both in acute and chronic HHcy ApoE-/- mice. Upon Hcy administration in C57BL/6J mice, platelet aggregation, spreading, and clot retraction were markedly promoted. More importantly, homocysteine (Hcy) increased the affinity of platelet integrin αIIbβ3 with ligands and enhanced integrin outside-in signaling by promoting membrane phosphatidylserine (PS) exposure in vitro. Mechanistically, lipidomics analysis showed that lysophosphatidylcholines were the primary metabolites leading to clustering of HHcy-stimulated platelets. Cytosolic phospholipase A2 (cPLA2) activity and autotaxin (ATX, a secreted lysophospholipase D) secretion were upregulated by Hcy, leading to membrane phospholipid hydrolysis and PS exposure. Moreover, secreted ATX directly interacted with integrin β3. Inhibitors of cPLA2 and ATX activity blocked integrin αIIbβ3 outside-in signaling and thrombosis in HHcy ApoE-/- mice. This study identifies a novel mechanism by which HHcy promotes platelet membrane phospholipid catabolism and extracellular ATX secretion to activate integrin outside-in signaling, consequently to exaggerate thrombosis. This study reveals an innovative approach to treat HHcy-related thrombotic diseases.


Oncogene ◽  
2021 ◽  
Author(s):  
Satoshi Takagi ◽  
Yuki Sasaki ◽  
Sumie Koike ◽  
Ai Takemoto ◽  
Yosuke Seto ◽  
...  

AbstractOsteosarcoma is the most common primary malignant bone cancer, with high rates of pulmonary metastasis. Osteosarcoma patients with pulmonary metastasis have worse prognosis than those with localized disease, leading to dramatically reduced survival rates. Therefore, understanding the biological characteristics of metastatic osteosarcoma and the molecular mechanisms of invasion and metastasis of osteosarcoma cells will lead to the development of innovative therapeutic intervention for advanced osteosarcoma. Here, we identified that osteosarcoma cells commonly exhibit high platelet activation-inducing characteristics, and molecules released from activated platelets promote the invasiveness of osteosarcoma cells. Given that heat-denatured platelet releasate maintained the ability to promote osteosarcoma invasion, we focused on heat-tolerant molecules, such as lipid mediators in the platelet releasate. Osteosarcoma-induced platelet activation leads to abundant lysophosphatidic acid (LPA) release. Exposure to LPA or platelet releasate induced morphological changes and increased invasiveness of osteosarcoma cells. By analyzing publicly available transcriptome datasets and our in-house osteosarcoma patient-derived xenograft tumors, we found that LPA receptor 1 (LPAR1) is notably upregulated in osteosarcoma. LPAR1 gene KO in osteosarcoma cells abolished the platelet-mediated osteosarcoma invasion in vitro and the formation of early pulmonary metastatic foci in experimental pulmonary metastasis models. Of note, the pharmacological inhibition of LPAR1 by the orally available LPAR1 antagonist, ONO-7300243, prevented pulmonary metastasis of osteosarcoma in the mouse models. These results indicate that the LPA–LPAR1 axis is essential for the osteosarcoma invasion and metastasis, and targeting LPAR1 would be a promising therapeutic intervention for advanced osteosarcoma.


Author(s):  
Irene Carmagnola ◽  
Tiziana Nardo ◽  
Francesca Boccafoschi ◽  
Valeria Chiono

The stainless steel (SS) stents have been used in clinics since 1994. However, typical drawbacks are restenosis and thrombus formation due to limited endothelialisation and hemocompatibility. Surface modification is a smart strategy to enhance antithrombogenicity by promoting endothelialisation. In this work, the layer-by-layer (LbL) technique was applied for coating SS model substrates, after surface priming by functionalisation with 3-aminopropyl triethoxysilane (APTES). A LbL coating made of 14 layers of poly(styrene sulfonate)/poly(diallyldimethylammonium chloride) and heparin as last layer was deposited. FTIR-ATR analysis and contact angle measurements showed that LbL was an effective method to prepare nanostructured coatings. XPS analysis and colorimetric assay employing 1,9-dimethylmethylene blue dye to detect -COOH groups confirmed the successful polyelectrolyte deposition on the coated samples. Preliminary in vitro cell tests, using whole blood and human platelets, were performed to evaluate how surface modification affects platelet activation. Results showed that SS and SS-APTES surfaces induced platelet activation, as indicated by platelet spreading and filopodia formation. After surface modification by LbL coating, the platelets assumed a round shape and no fibrin nets were detected. Data demonstrated that LbL coating is a promising technique to fabricate antithrombogenic surface.


2020 ◽  
Vol 120 (11) ◽  
pp. 1548-1556
Author(s):  
Thomas Bärnthaler ◽  
Elisabeth Mahla ◽  
Gabor G. Toth ◽  
Rufina Schuligoi ◽  
Florian Prüller ◽  
...  

Abstract Background For patients treated with dual antiplatelet therapy, standardized drug-specific 3-to-7 day cessation is recommended prior to major surgery to reach sufficient platelet function recovery. Here we investigated the hypothesis that supplemental fibrinogen might mitigate the inhibitory effects of antiplatelet therapy. Methods and Results To this end blood from healthy donors was treated in vitro with platelet inhibitors, and in vitro thrombus formation and platelet activation were assessed. Ticagrelor, acetylsalicylic acid, the combination of both, and tirofiban all markedly attenuated the formation of adherent thrombi, when whole blood was perfused through collagen-coated microchannels at physiological shear rates. Addition of fibrinogen restored in vitro thrombus formation in the presence of antiplatelet drugs and heparin. However, platelet activation, as investigated in assays of P-selectin expression and calcium flux, was not altered by fibrinogen supplementation. Most importantly, fibrinogen was able to restore in vitro thrombogenesis in patients on maintenance dual antiplatelet therapy after percutaneous coronary intervention. Conclusion Thus, our in vitro data support the notion that supplementation of fibrinogen influences the perioperative hemostasis in patients undergoing surgery during antiplatelet therapy by promoting thrombogenesis without significantly interfering with platelet activation.


2020 ◽  
Vol 4 (4) ◽  
pp. 638-643
Author(s):  
Manuel Salzmann ◽  
Sonja Bleichert ◽  
Bernhard Moser ◽  
Marion Mussbacher ◽  
Mildred Haase ◽  
...  

Abstract Platelets are small anucleate cells that release a plethora of molecules to ensure functional hemostasis. It has been reported that IκB kinase 2 (IKK2), the central enzyme of the inflammatory NF-κB pathway, is involved in platelet activation, because megakaryocyte/platelet-specific deletion of exons 6 and 7 of IKK2 resulted in platelet degranulation defects and prolonged bleeding. We aimed to investigate the role of IKK2 in platelet physiology in more detail, using a platelet-specific IKK2 knockout via excision of exon 3, which makes up the active site of the enzyme. We verified the deletion on genomic and transcriptional levels in megakaryocytes and were not able to detect any residual IKK2 protein; however, platelets from these mice did not show any functional impairment in vivo or in vitro. Bleeding time and thrombus formation were not affected in platelet-specific IKK2-knockout mice. Moreover, platelet aggregation, glycoprotein GPIIb/IIIa activation, and degranulation were unaltered. These observations were confirmed by pharmacological inhibition of IKK2 with TPCA-1 and BMS-345541, which did not affect activation of murine or human platelets over a wide concentration range. Altogether, our results imply that IKK2 is not essential for platelet function.


2005 ◽  
Vol 146 (4) ◽  
pp. 216-226 ◽  
Author(s):  
George Hsiao ◽  
Ying Wang ◽  
Nien-Hsuan Tzu ◽  
Tsorng-Hang Fong ◽  
Ming-Yi Shen ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3526-3526 ◽  
Author(s):  
Laurence Panicot-Dubois ◽  
Christophe Dubois ◽  
Barbara C. Furie ◽  
Bruce Furie ◽  
Dominique Lombardo

Abstract Bile Salt Dependent Lipase (BSDL) is an enzyme secreted by pancreatic acinar cells. BSDL, in the presence of primary bile salts, participates in the hydrolysis of dietary lipid esters in the duodenum lumen. This 105 kDa N and O-glycosylated protein has been detected in the plasma of normal subjects. Recent in vitro and in vivo studies demonstrated that pancreatic BSDL reaches the blood via transcytosis through enterocytes. Other studies showed that pancreatic human BSDL is captured by human umbilical vein endothelial cells and induces the proliferation of smooth muscle cells in vitro at BSDL concentrations found in blood, suggesting that this enzyme may play a role in hemostasis and thrombosis. However the specific role of circulating BSDL is unknown. The goal of this study was to determine the possible involvement of circulating BSDL in thrombus formation. We investigated the participation of circulating mouse BSDL in thrombus formation using widefield intravital microscopy in the cremaster muscle of living mice. Thrombi were formed following laser injury of the vessel wall of an arteriole in the cremaster muscle. Pancreatic mouse BSDL, a 74 kDa glycoprotein, was detected using several antibodies directed against either the whole human BSDL (pAbL64, pAbL32) or a peptide based on a sequence in the N-terminal domain of BSDL (Ser326-Thr350; pAbAntipeptide). Mouse and human BSDL share about 80% sequence homology, the main difference localized in the C-terminal domain, which is truncated to the mouse BSDL compared with the human enzyme. All the antibodies are able to specifically recognize the mouse pancreatic BSDL. Using antibodies pAbL64, pAbL32, or pAbAntipeptide we observed specific accumulation of circulating mouse BSDL into the growing thrombus. The circulating BSDL co-localized with platelets present in the thrombus. These results suggest that circulating BSDL is involved in thrombus formation in vivo. In order to determine if BSDL plays a role in platelet activation and aggregation, we performed in vitro studies on human washed platelets. BSDL increased both the amount of phosphatidylserine exposure on the surface of platelets and the activation of αIIbβ3 induced by thrombin. These results indicate that this enzyme can amplify the activation of platelets in vitro. While BSDL alone cannot induce the aggregation of platelets, this enzyme significantly increases the amount of platelet aggregation induced by SFLLRN peptide or thrombin. Altogether, these data suggeste that circulating BSDL participates in the thrombus formation after laser injury of the arterial wall and can amplify both the activation of platelets and the phosphatidylserine exposure, increasing the thrombotic response after vessel injury. This mechanism may be operative in the development of venous thromboembolic disease in pancreatic cancer.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 326-326
Author(s):  
Wolfgang Bergmeier ◽  
Jill R. Crittenden ◽  
Crystal L. Piffath ◽  
Denisa D. Wagner ◽  
David E. Housman ◽  
...  

Abstract Inside-out activation of platelet integrin αIIbβ3 is a key step in agonist-induced platelet aggregation. Recent studies suggested the involvement of the small GTPase Rap1b in this process as it is highly expressed in platelets and becomes activated during platelet activation. In cell lines, overexpression of the Rap activator CalDAG-GEFI increased αIIbβ3-dependent adhesion, while overexpression of RapGAP, which inactivates Rap1, reduced αIIbβ3 activity. Here we provide evidence that CalDAG-GEFI is an essential component of this pathway in vivo. To generate CalDAG-GEFI knockout mice, we engineered mouse embryonic stem (ES) cells with a deletion that results in a frameshift mutation and a premature stop codon at the position encoding the 37th amino acid of CalDAG-GEFI. These ES cells were then used to derive chimeric mice that yielded germline transmission of the CalDAG-GEFI mutation. Deficiency of CalDAG-GEFI in mutant mice was confirmed by immunohistochemistry and western blot analysis. CalDAG-GEFI−/− platelets showed impaired Rap1b activation and aggregation in response to various agonists, with aggregation being completely blocked when platelets were activated with ADP, thromboxaneA2 analog, or calcium ionophore. Under physiological flow conditions in vitro and in vivo, CalDAG-GEFI-deficient platelets showed normal tethering to basement membrane components but failed to form thrombi. Mice deficient in CalDAG-GEFI were further characterized by a greatly increased bleeding time as well as by a strong protection against collagen-induced pulmonary thrombosis. In summary, we identified CalDAG-GEFI as a key signal integrator in the cascade leading through Rap1 and integrin αIIbβ3 to platelet aggregation and thrombus formation. The fact that CalDAG-GEFI knockout mice are resistant to collagen-induced thrombosis, and do not undergo spontaneous hemorrhaging, suggests that CalDAG-GEFI may be a promising new target for antithrombotic therapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2999-2999
Author(s):  
Lucia Stefanini ◽  
Moritz Stolla ◽  
Sean F Maloney ◽  
Timothy Daniel Ouellette ◽  
Claire Roden ◽  
...  

Abstract Abstract 2999 Poster Board II-968 The Gi-coupled ADP receptor, P2Y12, is the target of clopidogrel bisulfate (Plavix), currently the most successful anti-platelet strategy used in the clinic. In a recent study, we have shown that the Ca2+-sensing nucleotide exchange factor, CalDAG-GEFI, and P2Y12 represent the major signaling pathways leading to Rap1 and integrin activation in platelets (Cifuni et al., 2008, Blood). In the present study, we have further evaluated the importance of CalDAG-GEFI signaling and Rap1 activation for various aspects of platelet activation, and we have compared thrombus formation of CalDAG-GEFI−/− and WT/clopidogrel platelets under static and flow conditions in vitro. Our studies establish a revised model for platelet activation by collagen. In platelets activated with threshold concentrations of GPVI agonists, CalDAG-GEFI serves as a highly sensitive response element to Ca2+ that allows for the rapid activation of Rap1. CalDAG-GEFI-mediated Rap1 activation triggers a first wave of integrin activation and ERK (MAPK) signaling, followed by TxA2 release. TxA2 provides crucial feedback for the activation of PKC and granule/ADP release. ADP in turn triggers the second, P2Y12-dependent wave of Rap1-mediated signaling events, leading to the sustained activation of integrins and further release of TxA2. Higher concentrations of GPVI agonists lead to the concomitant activation of CalDAG-GEFI and PKC, facilitating platelet aggregation independent of feedback by endogenous TxA2. Under physiological flow conditions, CalDAG-GEFI-dependent platelet activation (clopidogrel-treated WT platelets) allowed for the formation of small but unstable thrombi, which rapidly disintegrated at high shear rates. In contrast, CalDAG-GEFI−/− platelets (P2Y12-dependent platelet activation) in anticoagulated blood firmly adhered to the thrombogenic surface but failed to form thrombi, even at high concentrations of collagen. Addition of exogenous TxA2 to anticoagulated CalDAG-GEFI−/− blood did not restore thrombus formation under flow. However, small thrombi were observed with non-anticoagulated CalDAG-GEFI−/− blood perfused at venous but not arterial shear rates, suggesting that a) locally generated thrombin facilitates the recruitment of free flowing CalDAG-GEFI−/− platelets to already adherent platelets, and b) the slow kinetics of P2Y12-dependent Rap1 activation only supports thrombin-induced platelet-platelet cohesion at low shear conditions. In conclusion, our studies demonstrate that CalDAG-GEFI/Rap1 signaling plays a critical role for the first wave of integrin activation and TxA2 generation important for platelet adhesion to a thrombogenic surface. Signaling by P2Y12/Rap1 is essential for sustained platelet activation/thrombus stabilization and partially compensates for CalDAG-GEFI/Rap1-mediated platelet adhesion under low flow conditions. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document