CalDAG-GEFI Is a Key Signal Integrator in Platelet Activation and Thrombus Formation.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 326-326
Author(s):  
Wolfgang Bergmeier ◽  
Jill R. Crittenden ◽  
Crystal L. Piffath ◽  
Denisa D. Wagner ◽  
David E. Housman ◽  
...  

Abstract Inside-out activation of platelet integrin αIIbβ3 is a key step in agonist-induced platelet aggregation. Recent studies suggested the involvement of the small GTPase Rap1b in this process as it is highly expressed in platelets and becomes activated during platelet activation. In cell lines, overexpression of the Rap activator CalDAG-GEFI increased αIIbβ3-dependent adhesion, while overexpression of RapGAP, which inactivates Rap1, reduced αIIbβ3 activity. Here we provide evidence that CalDAG-GEFI is an essential component of this pathway in vivo. To generate CalDAG-GEFI knockout mice, we engineered mouse embryonic stem (ES) cells with a deletion that results in a frameshift mutation and a premature stop codon at the position encoding the 37th amino acid of CalDAG-GEFI. These ES cells were then used to derive chimeric mice that yielded germline transmission of the CalDAG-GEFI mutation. Deficiency of CalDAG-GEFI in mutant mice was confirmed by immunohistochemistry and western blot analysis. CalDAG-GEFI−/− platelets showed impaired Rap1b activation and aggregation in response to various agonists, with aggregation being completely blocked when platelets were activated with ADP, thromboxaneA2 analog, or calcium ionophore. Under physiological flow conditions in vitro and in vivo, CalDAG-GEFI-deficient platelets showed normal tethering to basement membrane components but failed to form thrombi. Mice deficient in CalDAG-GEFI were further characterized by a greatly increased bleeding time as well as by a strong protection against collagen-induced pulmonary thrombosis. In summary, we identified CalDAG-GEFI as a key signal integrator in the cascade leading through Rap1 and integrin αIIbβ3 to platelet aggregation and thrombus formation. The fact that CalDAG-GEFI knockout mice are resistant to collagen-induced thrombosis, and do not undergo spontaneous hemorrhaging, suggests that CalDAG-GEFI may be a promising new target for antithrombotic therapy.

2018 ◽  
Vol 115 (11) ◽  
pp. 1672-1679 ◽  
Author(s):  
Qi Ma ◽  
Weilin Zhang ◽  
Chongzhuo Zhu ◽  
Junling Liu ◽  
Quan Chen

Abstract Aims AKT kinase is vital for regulating signal transduction in platelet aggregation. We previously found that mitochondrial protein FUNDC2 mediates phosphoinositide 3-kinase (PI3K)/phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent AKT phosphorylation and regulates platelet apoptosis. The aim of this study was to evaluate the role of FUNDC2 in platelet activation and aggregation. Methods and results We demonstrated that FUNDC2 deficiency diminished platelet aggregation in response to a variety of agonists, including adenosine 5′-diphosphate (ADP), collagen, ristocetin/VWF, and thrombin. Consistently, in vivo assays of tail bleeding and thrombus formation showed that FUNDC2-knockout mice displayed deficiency in haemostasis and thrombosis. Mechanistically, FUNDC2 deficiency impairs the phosphorylation of AKT and downstream GSK-3β in a PI3K-dependent manner. Moreover, cGMP also plays an important role in FUNDC2/AKT-mediated platelet activation. This FUNDC2/AKT/GSK-3β/cGMP axis also regulates clot retraction of platelet-rich plasma. Conclusion FUNDC2 positively regulates platelet functions via AKT/GSK-3β/cGMP signalling pathways, which provides new insight for platelet-related diseases.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 111-111 ◽  
Author(s):  
Meghna Ulhas Naik ◽  
Timothy J. Stalker ◽  
Lawrence F. Brass ◽  
Ulhas Pandurang Naik

Abstract Under physiological conditions, fibrinogen receptor integrin αIIbβ3 on the circulating platelets is in a low-affinity, or resting state, unable to bind soluble ligands. During platelet activation by agonists, a cascade of signaling events induces a conformational change in the extracellular domain of αIIbβ3, thereby converting it into a high-affinity state capable of binding ligands through a process known as “inside-out signaling”. What maintains this integrin in a low-affinity state is not well understood. We have previously identified JAM-A, junctional adhesion molecule A, on the platelet surface. We have shown that an antibody blockade of JAM-A dose-dependently activates platelets. To understand the molecular mechanism through which JAM-A regulates platelet aggregation, we used Jam-A null mice. Interestingly, the mouse bleeding times were significantly shortened in Jam-A null mice compared to wildtype littermates. Furthermore, the majority of these mice showed a rebleeding phenotype. This phenotype was further confirmed by FeCl3-induced carotid artery occlusion, a well-accepted in vivo model for thrombosis. Platelets derived from Jam-A-null mice were used to evaluate the role of JAM-A in agonist-induced platelet aggregation. We found that Jam-A null platelets showed enhanced aggregation in response to physiological agonists such as PAR4 peptide, collagen, and ADP as compared to platelets from wildtype littermates. JAM-A was found to associate with αIIbβ3 in unactivated human platelets, but this association was disrupted by both agonist-induced platelet aggregation and during outside-in signaling initiated upon platelet spreading on immobilized Fg. We also found that in resting platelets, JAM-A is phosphorylated on a conserved tyrosine 280 in its cytoplasmic domain, which was dephosphorylated upon platelet activation. Furthermore, JAM-A is rapidly and transiently phosphorylated on serine 284 residue during platelet activation by agonists. Interestingly, JAM-A also formed a complex with Csk, a tyrosine kinase known to be inhibitory to Src activation, in resting platelets. This complex was dissociated upon activation of platelets by agonists. These results suggest that tyrosine-phosphorylated JAM-A recruits Csk to αIIbβ3 in resting platelets, thus maintaining a low-affinity state of integrin αIIbβ3. Agonist–induced activation of platelets results in rapid dephosphorylation of JAM-A on Y280 and phosphorylation on S284 residues. This causes dissociation of JAM-A from integrin αIIbβ3 facilitating platelet aggregation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3926-3926 ◽  
Author(s):  
Subia Tasneem ◽  
Adili Reheman ◽  
Heyu Ni ◽  
Catherine P.M. Hayward

Abstract Studies of mice with genetic deficiencies have provided important insights on the functions of many proteins in thrombosis and hemostasis. Recently, a strain of mice (C57BL/6JOlaHsd, an inbred strain of C57BL/6J) has been identified to have a spontaneous, tandem deletion of the multimerin 1 and α-synuclein genes, which are also adjacent genes on human chromosome 4q22. Multimerin 1 is an adhesive protein found in platelets and endothelial cells while α-synuclein is a protein found in the brain and in blood that is implicated in neurodegenerative diseases and exocytosis. In vitro, multimerin 1 supports platelet adhesion while α-synuclein inhibits α-granule release. We postulated that the loss of multimerin 1 and α-synuclein would alter platelet function and that recombinant human multimerin 1 might correct some of these abnormalities. We compared platelet adhesion, aggregation and thrombus formation in vitro and in vivo in C57BL/6JOlaHsd and C57BL/6 mice. Thrombus formation was studied by using the ferric-chloride injured mesenteric arteriole thrombosis model under intravital microscopy. We found that platelet adhesion, aggregation and thrombus formation in C57BL/6JOlaHsd were significantly impaired in comparison to control, C57BL/6 mice. The number of single platelets, deposited 3–5 minutes after injury, was significantly decreased in C57BL/6JOlaHsd mice (P <0.05, platelets/min: C57BL/6 = 157 ± 15, n=16; C57BL/6JOlaHsd = 77 ± 13, n=17). Moreover, thrombus formation in these mice was significantly delayed. Thrombi in C57BL/6JOlaHsd were unstable and easily dissolved, which resulted in significant delays (P<0.001) in vessel occlusion (mean occlusion times: C57BL/6 = 15.6 ± 1.2 min, n=16; C57BL/6JOlaHsd = 31.9 ± 2.1 min, n=17). We further tested platelet function in these mice by ADP and thrombin induced platelet aggregation using platelet rich plasma and gel-filtered platelets, respectively. Although no significant differences were seen with ADP aggregation, thrombin-induced platelet aggregation was significantly impaired in C57BL/6JOlaHsd mice. Platelet adhesion to type I collagen (evaluated using microcapillary chambers, perfused at 1500 s−1 with whole blood) was also impaired in C57BL/6JOlaHsd mice. However, platelets from C57BL/6JOlaHsd mice showed a normal pattern of agonist-induced release of α-granule P-selectin. Multimerin 1 corrected the in vitro aggregation and adhesion defects of C57BL/6JOlaHsd platelets. Furthermore, the transfusion of multimerin 1 into C57BL/6JOlaHsd mice corrected the impaired platelet deposition and thrombus formation in vivo. No significant difference was found in tail bleeding time between the two groups of mice. As α-synuclein knockout mice have a shortened time to thrombus formation (Circulation2007;116:II_76), the effects of multimerin 1 on impaired platelet function in C57BL/6JOlaHsd mice provide supportive evidence that multimerin 1 contributes to platelet adhesion and thrombus formation at the site of vessel injury. The findings suggest multimerin 1 knockout mice will be useful to explore platelet function. The first two authors and participating laboratories contributed equally to this study.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1050-1050
Author(s):  
Angela Doerr ◽  
Denise Pedrosa ◽  
Maria Schander ◽  
Yotis A. Senis ◽  
Alexandra Mazharian ◽  
...  

Abstract Background Thrombus formation is a complex, dynamic and multistep process, based on two crucial steps: platelet adhesion and platelet aggregation that both involve the large multimeric plasma glycoprotein Von Willebrand Factor (VWF). VWF binding to the GPIb/X/V complex initiates platelet adhesion to the vessel wall at high shear stress and triggers platelet activation resulting in the generation of thrombin and activation of integrin αIIbβ3 on the platelet surface. This activation of αIIbβ3 in turn leads to outside-in signalling and promotes binding of αIIbβ3 to fibrinogen and VWF, mediating thrombus growth. Trigging receptor expressed on myeloid cells like transcript-1 (TLT-1) is a transmembrane receptor, which is targeted to α-granules of platelets and megakaryocytes. Thrombin-induced platelet activation rapidly presents TLT-1 on the platelet surface and releases a soluble form (sTLT-1) into the circulation. To date the only known ligand for TLT-1 is fibrinogen and TLT-1 has been implicated in the regulation of inflammation-associated thrombosis. Interestingly, a putative interaction of VWF with TLT-1 was indicated by a screen with known platelet receptors. Aim We aimed to evaluate the effect of TLT-1/VWF interaction on platelet aggregation and thrombus formation. Methods Recombinant TLT-1 and VWF were purified and the interaction between TLT-1 and VWF was analyzed by surface plasmon resonance. Static interaction was confirmed by an ELISA based binding assay. Flow assays assessed TLT-1 dependent thrombus formation in vitro. The effects of TLT-1 knockout on thrombus formation in vivo were examined via intravital microscopy of the flow restricted inferior vena cava (IVC) and imaging of platelet attachment and fibrin formation over 6 hours. Furthermore, thrombus formation and resolution was followed by high resolution ultrasound imaging after stenosis induction for 28 days. Integrin aIIbb3 activation was analysed by flow cytometry using the JonA antibody in murine platelet rich plasma. Results VWF bound to soluble TLT-1 with high affinity in a calcium dependent manner (K D = 1.9 nM). The binding site on VWF was mapped to the A3D4 domains and high molecular weight VWF multimers had the greatest affinity for TLT-1. Moreover, HEK293 cells transfected with TLT-1 bound to VWF and VWF strings formed specifically on TLT-1 expressing cells, confirming the interaction between the two proteins. VWF inhibited the binding of fibrinogen to TLT-1, suggesting that VWF is a preferred binding partner of TLT-1. Human platelets exhibited increased TLT-1 surface expression after TRAP-6 induced platelet activation and TLT-1 was detected throughout thrombi formed under flow. Furthermore, a TLT-1 blocking antibody inhibited the interaction of TLT-1 with VWF and reduced platelet capture to type I collagen under shear stress. Ex vivo perfusion of blood from TLT-1 knock out mice over type I collagen also resulted in reduced thrombus formation compared to blood from wild-type mice. TLT-1 knock-out platelets were activated by thrombin similar to wild-type controls, based on P-selectin expression in platelet rich plasma. However, activation of integrin αIIbβ3 determined by JonA staining was reduced in the absence of TLT-1. This phenotype of reduced integrin αIIbβ3 activation on P-selectin positive platelets was phenocopied by the thrombin platelet response in platelet rich plasma from VWF -/- mice, but not GPIbα-deficient mice, indicating that the TLT-1-VWF interaction on platelets directly influences integrin αIIbβ3 activation. Significantly, thrombus formation was markedly reduced in TLT-1 knockout mice in the IVC model in vivo in comparison to wild-type mice. Conclusions This study demonstrates that TLT-1 is a novel platelet ligand for VWF, and that TLT-1 may preferentially bind VWF over fibrinogen. We propose a TLT-1/VWF dependent integrin αIIbβ3 activation mechanism which plays a pivotal role in thrombus formation under non-inflammatory and potentially inflammatory conditions. Disclosures Ruf: ICONIC Therapeutics: Consultancy; MeruVasimmune: Current holder of individual stocks in a privately-held company; ARCA bioscience: Consultancy, Patents & Royalties.


Blood ◽  
2012 ◽  
Vol 119 (14) ◽  
pp. 3352-3360 ◽  
Author(s):  
Meghna U. Naik ◽  
Timothy J. Stalker ◽  
Lawrence F. Brass ◽  
Ulhas P. Naik

Abstract Mounting evidence suggests that agonist-initiated signaling in platelets is closely regulated to avoid excessive responses to injury. A variety of physiologic agonists induce a cascade of signaling events termed as inside-out signaling that culminate in exposure of high-affinity binding sites on integrin αIIbβ3. Once platelet activation has occurred, integrin αIIbβ3 stabilizes thrombus formation by providing agonist-independent “outside-in” signals mediated in part by contractile signaling. Junctional adhesion molecule A (JAM-A), a member of the cortical thymocyte marker of the Xenopus (CTX) family, was initially identified as a receptor for a platelet stimulatory mAb. Here we show that JAM-A in resting platelets functions as an endogenous inhibitor of platelet function. Genetic ablation of Jam-A in mice enhances thrombotic function of platelets in vivo. The absence of Jam-A results in increase in platelet aggregation ex vivo. This gain of function is not because of enhanced inside-out signaling because granular secretion, Thromboxane A2 (TxA2) generation, as well as fibrinogen receptor activation, are normal in the absence of Jam-A. Interestingly, integrin outside-in signaling such as platelet spreading and clot retraction is augmented in Jam-A–deficient platelets. We conclude that JAM-A normally limits platelet accumulation by inhibiting integrin outside-in signaling thus preventing premature platelet activation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 91-91
Author(s):  
Wolfgang Bergmeier ◽  
David S Paul ◽  
Lucia Stefanini ◽  
Raymond F. Robledo ◽  
E. Ricky Chan ◽  
...  

Abstract The small GTPase RAP1 is critical for platelet activation and thrombus formation. RAP1 activity in platelets is controlled by the guanine nucleotide exchange factor CalDAG-GEFI and an unknown regulator operating downstream of the ADP receptor, P2Y12, the target of antithrombotic therapy. Here we provide evidence that the GTPase-activating protein, RASA3, is a critical inhibitor of platelet activation and the missing link in the P2Y12/RAP1 signaling pathway. Genetic inactivation of Rasa3 led to premature activation and markedly reduced lifespan of circulating platelets in mice (t1/2=14 hrs vs. 55 hrs in controls). The increased platelet turnover and the resulting thrombocytopenia were reversed by concomitant deletion of CalDAG-GEFI. Rasa3 mutant platelets were hyperresponsive to agonist stimulation, both in vitro and in vivo. Importantly, activation of Rasa3 mutant platelets occurred independently of ADP feedback signaling and was insensitive to inhibitors of P2Y12 or PI3 kinase. Thus, constitutively active RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI/RAP1 signaling. At sites of vascular injury, P2Y12 signaling is required to inhibit RASA3 and enable sustained RAP1-dependent platelet activation and thrombus formation. Our findings provide critical mechanistic insights for the antithrombotic effect of P2Y12 inhibitors and may lead to improved diagnosis and treatment of platelet-related disorders. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2418-2418
Author(s):  
Li Zhu

Abstract Tannic acid (TA) was a polyphenol that harbors anti-oxidant capacity. A recent report implied that surface coating with TA might blunt thrombosis via altering the structure of fibrinogen. However, the effect of TA on platelet function and in vivo thrombus formation has not been reported. In this study, we showed that TA inhibits PDI activity and attenuates platelet activation. To explore the effects of TA on platelet aggregation, gel-filtered human platelets from healthy human donors were pretreated with TA (10/30/50 μM) or vehicle (0.9% sodium chloride) before being stimulated by various agonists. Turbidity analyses on a Chronolog aggregometer showed that TA dose-dependently inhibited platelet aggregation induced by thrombin, SFLLRN, GYQGQV, collagen, CRP, U46619, and ristocetin. Next, we employed flow cytometry (FACS) to determine the role of TA in platelet activation, including α-granule secretion and integrin activation. Pretreatment of platelets with TA led to significant reductions in surface P-selectin expression and soluble fibrinogen binding, supporting the inhibition of diverse platelet activation pathways. Supportively, platelet spreading on immobilized fibrinogen was significantly suppressed by TA treatment. In addition, cell viability assay with Almar blue agent showed no detrimental impact of TA on the survival of platelets. To ask whether the antiplatelet role of TA might be translated into an antithrombotic efficacy, we tested the effect of TA in both ex vivo and in vivo thrombosis models. Calcein-labeled human whole blood was perfused through microfluidic channels coated with collagen, and adherent platelets were visualized under a fluorescent microscopy. However, treatment with TA suppressed the number of adherent platelets under flow conditions. Moreover, in laser-induced mouse cremaster muscle arteries, administration of TA (5mg/kg) significantly reduced the size of forming thrombi compared with the vehicle. Verification of bleeding risk using tail truncation assay indicated no prolongation of bleeding time in mice receiving TA. Thus, TA shows an antiplatelet effect and may also attenuate thrombus formation. To gain a mechanistic insight to the role of TA in platelet function, we performed a molecular docking screen of the structure of TA and platelet surface proteins using the Autodock Vina software, which displayed the binding of TA with protein disulfide isomerase at the enzymatic active center. We then measured the impact of TA on PDI reductase activity with the dieosin glutathione disulfide assay in vitro (di-GSSG), showing that TA significantly inhibited PDI activity in a concentration-dependent manner. The results were verified in platelets using the 3-(N-Maleimidylpropionyl) biocytin (MPB) labeling, which showed that TA abrogated thrombin-stimulated free thiol formation on platelet surface. Supportively, FACS demonstrated that TA significantly suppressed the binding of fluorescent-labeled PDI to Mn2+-activated platelet integrin β3. Taken together, our findings demonstrated that TA inhibits PDI activity and may become a novel antithrombotic agent. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1131-1131
Author(s):  
Jasna Marjanovic ◽  
Brad Rumancik ◽  
Luke Weber ◽  
Felix Wangmang ◽  
Dane Fickes ◽  
...  

Abstract Phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2) is a messenger that accumulates in platelets in a phosphoinositide 3-kinase and platelet aggregation-dependent manner. PtdIns(3,4)P2 is broken down by inositol polyphosphate 4-phosphatases, type I (INPP4A) and type II (INPP4B). These enzymes do not catalyze hydrolysis of phosphoinositides other than PtdIns(3,4)P2, and therefore provide unique means for studying the role of this lipid in platelet activation. We have found that the dominant isoform of 4-phosphatases expressed in platelets is INPP4A and we have generated radiation chimera mice with the deficiency in INPP4A restricted to hematopoietic cell lineage. Compared to wild type platelets, agonist-stimulated INPP4A-deficient platelets accumulated higher levels of PtdIns(3,4)P2. An increase in platelet aggregation in INPP4A-deficient platelets was observed with all tested agonists. To study platelet function in vivo, we performed carotid artery injury mouse thrombosis model experiments. Time to occlusion was dramatically reduced in mice with INPP4A deficiency. These data support the hypothesis that by regulating PtdIns(3,4)P2 levels, INPP4A downregulates platelet aggregation and thrombus formation. To investigate mechanisms mediating INPP4A-dependent signals, we compared levels of phosphorylated Akt and phosphorylated glycogen synthase kinase (GSK) in wild type and INPP4A-deficient platelets in response to agonist stimulation. An increase in phospho-Akt levels was observed in INPP4A-deficient platelets, suggesting that in addition to its well-characterized regulator, PtdIns(3,4,5)P3, PtdIns(3,4)P2 can promote Akt activation. Interestingly, this was not accompanied by a significant increase in phospho-GSK levels, suggesting a possible novel mechanism involved in platelet aggregation. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 7 (11) ◽  
pp. 440 ◽  
Author(s):  
Wan Lu ◽  
Chi Chung ◽  
Ray Chen ◽  
Li Huang ◽  
Li Lien ◽  
...  

Phospholipase D (PLD) is involved in many biological processes. PLD1 plays a crucial role in regulating the platelet activity of mice; however, the role of PLD in the platelet activation of humans remains unclear. Therefore, we investigated whether PLD is involved in the platelet activation of humans. Our data revealed that inhibition of PLD1 or PLD2 using pharmacological inhibitors effectively inhibits platelet aggregation in humans. However, previous studies have showed that PLD1 or PLD2 deletion did not affect mouse platelet aggregation in vitro, whereas only PLD1 deletion inhibited thrombus formation in vivo. Intriguingly, our data also showed that the pharmacological inhibition of PLD1 or PLD2 does not affect mouse platelet aggregation in vitro, whereas the inhibition of only PLD1 delayed thrombus formation in vivo. These findings indicate that PLD may play differential roles in humans and mice. In humans, PLD inhibition attenuates platelet activation, adhesion, spreading, and clot retraction. For the first time, we demonstrated that PLD1 and PLD2 are essential for platelet activation in humans, and PLD plays different roles in platelet function in humans and mice. Our findings also indicate that targeting PLD may provide a safe and alternative therapeutic approach for preventing thromboembolic disorders.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wan Jung Lu ◽  
Jiun Yi Li ◽  
Ray Jade Chen ◽  
Li Ting Huang ◽  
Tzu Yin Lee ◽  
...  

AbstractNADPH oxidase (NOX) enzymes are involved in a various physiological and pathological processes such as platelet activation and inflammation. Interestingly, we found that the pan-NOX inhibitors VAS compounds (VAS2870 and its analog VAS3947) exerted a highly potent antiplatelet effect. Unlike VAS compounds, concurrent inhibition of NOX1, 2, and 4 by treatment with ML171, GSK2795039, and GKT136901/GKT137831 did not affect thrombin and U46619-induced platelet aggregation. These findings suggest that VAS compounds may inhibit platelet aggregation via a NOX-independent manner. Thus, we aimed to investigate the detailed antiplatelet mechanisms of VAS compounds. The data revealed that VAS compounds blocked various agonist-induced platelet aggregation, possibly via blocking PKC downstream signaling, including IKKβ and p38 MAPK, eventually reducing platelet granule release, calcium mobilization, and GPIIbIIIa activation. In addition, VAS compounds inhibited mouse platelet aggregation-induced by collagen and thrombin. The in vivo study also showed that VAS compounds delayed thrombus formation without affecting normal hemostasis. This study is the first to demonstrate that, in addition to inhibiting NOX activity, VAS compounds reduced platelet activation and thrombus formation through a NOX-independent pathway downstream of PKC. These findings also indicate that VAS compounds may be safe and potentially therapeutic agents for treating patients with cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document