scholarly journals Riclinoctaose Attenuates Renal Ischemia-Reperfusion Injury by the Regulation of Macrophage Polarization

2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Zhao ◽  
Zhao Ding ◽  
Wenhao Ge ◽  
Junhao Liu ◽  
Xi Xu ◽  
...  

Renal ischemia-reperfusion injury is a major trigger of acute kidney injury and leads to permanent renal impairment, and effective therapies remain unresolved. Riclinoctaose is an immunomodulatory octasaccharide composed of glucose and galactose monomers. Here we investigated whether riclinoctaose protects against renal ischemia-reperfusion injury. In mice, pretreatment with riclinoctaose significantly improved renal function, structure, and the inflammatory response after renal ischemia-reperfusion. Flow cytometry analysis revealed that riclinoctaose inhibited ischemia-reperfusion-induced M1 macrophage polarization and facilitated M2 macrophage recruitment into the kidneys. In isolated mouse bone marrow-derived macrophages, pretreatment with riclinoctaose promoted the macrophage polarization toward M2-like phenotype. The inhibitor of Nrf-2/HO-1 brusatol diminished the effects of riclinoctaose on macrophage polarization. In mice, intravenous injection with riclinoctaose-pretreated bone marrow-derived macrophages also protected against renal ischemia-reperfusion injury. Fluorescence-labeled riclinoctaose specifically bound to the membrane of macrophages. Interfering with mDC-SIGN blocked the riclinoctaose function on M2 polarization of macrophages, consequently impairing the renoprotective effect of riclinoctaose. Our results revealed that riclinoctaose is a potential therapeutic agent in preventing renal ischemia-reperfusion injury.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Kyo Won Lee ◽  
Tae Min Kim ◽  
Kyeong Sik Kim ◽  
Seunghwan Lee ◽  
Junhun Cho ◽  
...  

Clinically, acute kidney injury (AKI) episodes in diabetes mellitus (DM) patients are associated with a cumulative risk of developing end-stage renal disease. In this study, we asked whether the severity of AKI induced by renal ischemia-reperfusion injury (IRI) is more prominent in DM than in non-DM control using a cynomolgus monkey (Macaca fascicularis) model. We also investigated whether human bone marrow-derived mesenchymal stem cells (hBM-MSCs) infused via the renal artery could ameliorate renal IRI in DM monkeys. The experimental data, including mortality rate, histologic findings, and urinary albumin secretion indicate that the severity of AKI was greater in DM monkeys than in control animals. Moreover, histological findings and qRT-PCR analysis of Ngal mRNA in renal biopsy tissue showed that hBM-MSC promoted the recovery of tubular damage caused by AKI. Serum analysis also revealed that the level of albumin and ALT was increased 24 and 48 hours after AKI, respectively, suggesting that AKI induced acute liver injury. We suggest that this nonhuman primate model could provide essential information about the renal and nonrenal impairment related to DM and help determine the clinical usefulness of MSCs in AKI.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Feng Zhang ◽  
Li Fan ◽  
Hao Zhang ◽  
Wen-juan Huang ◽  
Dong Sun ◽  
...  

Aims. Acute kidney injury (AKI) can lead to chronic kidney disease (CKD), and macrophages play a key role in this process. The aim of this study was to discover the role of IκB kinase α (IKKα) in macrophages in the process of AKI-to-CKD transition. Main Methods. We crossed lyz2-Cre mice with IKKα-floxed mice to generate mice with IKKα ablation in macrophages (Mac IKKα-/-). A mouse renal ischemia/reperfusion injury (IRI) model was induced by clamping the renal artery for 45 minutes. Treated mice were evaluated for blood biochemistry, tissue histopathology, and fibrosis markers. Macrophages were isolated from the peritoneal cavity for coculturing with tubular epithelial cells (TECs) and flow cytometry analysis. Key Findings. We found that fibrosis and kidney function loss after IRI were significantly alleviated in Mac IKKα-/- mice compared with wild-type (WT) mice. The expression of fibrosis markers and the infiltration of M2 macrophages were decreased in the kidneys of Mac IKKα-/- mice after IRI. The in vitro experiment showed that the IRI TECs cocultured with IKKα-/- macrophages (KO MΦs) downregulated the fibrosis markers accompanied by a downregulation of Wnt/β-catenin signaling. Significance. These data support the hypothesis that IKKα is involved in mediating macrophage polarization and increasing the expression of fibrosis-promoting inflammatory factors in macrophages. Therefore, knockdown of IKKα in macrophages may be a potential method that can be used to alleviate the AKI-to-CKD transition after IRI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao Hu ◽  
Yanan Xu ◽  
Zhaoqi Zhang ◽  
Zuofu Tang ◽  
Jinhua Zhang ◽  
...  

Renal ischemia-reperfusion injury (IRI) contributes to acute kidney injury (AKI), increases morbidity and mortality, and is a significant risk factor for chronic kidney disease (CKD). Macrophage infiltration is a common feature after renal IRI, and infiltrating macrophages can be polarized into the following two distinct types: M1 macrophages, i.e., classically activated macrophages, which can not only inhibit infection but also accelerate renal injury, and M2 macrophages, i.e., alternatively activated macrophages, which have a repair phenotype that can promote wound healing and subsequent fibrosis. The role of TSC1, which is a negative regulator of mTOR signaling that regulates macrophage polarization in inflammation-linked diseases, has been well documented, but whether TSC1 contributes to macrophage polarization in the process of IRI is still unknown. Here, by using a mouse model of renal ischemia-reperfusion, we found that myeloid cell-specific TSC1 knockout mice (termed Lyz-TSC1 cKO mice) had higher serum creatinine levels, more severe histological damage, and greater proinflammatory cytokine production than wild-type (WT) mice during the early phase after renal ischemia-reperfusion. Furthermore, the Lyz-TSC1 cKO mice showed attenuated renal fibrosis during the repair phase of IRI with decreased levels of M2 markers on macrophages in the operated kidneys, which was further confirmed in a cell model of hypoxia-reoxygenation (H/R) in vitro. Mechanistically, by using RNA sequencing of sorted renal macrophages, we found that the expression of most M1-related genes was upregulated in the Lyz-TSC1 cKO group (Supplemental Table 1) during the early phase. However, C/EBPβ and CD206 expression was decreased during the repair phase compared to in the WT group. Overall, our findings demonstrate that the expression of TSC1 in macrophages contributes to the whole process of IRI but serves as an inflammation suppressor during the early phase and a fibrosis promoter during the repair phase.


Life Sciences ◽  
2006 ◽  
Vol 78 (10) ◽  
pp. 1121-1128 ◽  
Author(s):  
Chih-Jen Wu ◽  
Joen-Rong Sheu ◽  
Han-Hsiang Chen ◽  
Hui-Fen Liao ◽  
Yuh-Cheng Yang ◽  
...  

Author(s):  
Chenguang Ding ◽  
Jin Zheng ◽  
Bo Wang ◽  
Yang Li ◽  
Heli Xiang ◽  
...  

Tubular epithelial cells (TECs) represent the primary site of renal ischemia/reperfusion injury (RIRI). However, whether the damage of TECs could drive the initiation of inflammation was unclear. Here we investigated the role of the TECs and macrophages during RIRI. Increased expression of inflammation response and activated M1 macrophage were determined in the mice model of RIRI. Moreover, we demonstrated global miRNA expression profiling of renal exosomes, and miR-374b-5p was most upregulated in these exosomes in vivo. Inhibition of miR-374b-5p in the mice upon RIR operation would alleviate the kidney injury via decreasing the production of proinflammatory cytokines and suppressing the macrophage activation. Similar results were also identified in the hypoxia-induced cell model where exosomal miR-374b-5p was dramatically upregulated. Uptake of exosomes derived from the hypoxic TECs by macrophages would trigger M1 polarization via transferring miR-374b-5p. Besides, we confirmed that miR-374b-5p could directly bind to Socs1 using a dual-luciferase reporter assay. Notably, when we injected the miR-374b-5p-enriched exosomes into mice, a high-level inflammatory response and M1 macrophage activation were performed. Our studies demonstrated that exosomal miR-374b-5p played an essential role in the communication between injured TECs and macrophages, resulting in the M1 macrophage activation during RIRI. The blockage of the release of such exosomes may serve as a new therapeutic strategy for RIRI.


2004 ◽  
Vol 171 (4S) ◽  
pp. 487-487
Author(s):  
Motoo Araki ◽  
Masayoshi Miura ◽  
Hiromi Kumon ◽  
John Belperio ◽  
Robert Strieter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document