scholarly journals Fractional-Order Investigation of Diffusion Equations via Analytical Approach

2021 ◽  
Vol 8 ◽  
Author(s):  
Haobin Liu ◽  
Hassan Khan ◽  
Saima Mustafa ◽  
Lianming Mou ◽  
Dumitru Baleanu

This research article is mainly concerned with the analytical solution of diffusion equations within a Caputo fractional-order derivative. The motivation and novelty behind the present work are the application of a sophisticated and straight forward procedure to solve diffusion equations containing a derivative of a fractional-order. The solutions of some illustrative examples are calculated to confirm the closed contact between the actual and the approximate solutions of the targeted problems. Through analysis it is shown that the proposed solution has a higher rate of convergence and provides a closed-form solution. The small number of calculations is the main advantage of the proposed method. Due to a comfortable and straight forward implementation, the suggested method can be utilized to nonlinear fractional-order problems in various applied science branches. It can be extended to solve other physical problems of fractional-order in multiple areas of applied sciences.

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 897-905
Author(s):  
Hassan Khan ◽  
Saima Mustafa ◽  
Izaz Ali ◽  
Poom Kumam ◽  
Dumitru Baleanu ◽  
...  

Abstract In this article, a modified variational iteration method along with Laplace transformation is used for obtaining the solution of fractional-order nonlinear convection–diffusion equations (CDEs). The proposed technique is applied for the first time to solve fractional-order nonlinear CDEs and attain a series-form solution with the quick rate of convergence. Tabular and graphical representations are presented to confirm the reliability of the suggested technique. The solutions are calculated for fractional as well as for integer orders of the problems. The solution graphs of the solutions at various fractional derivatives are plotted. The accuracy is measured in terms of absolute error. The higher degree of accuracy is observed from the table and figures. It is further investigated that fractional solutions have the convergence behavior toward the solution at integer order. The applicability of the present technique is verified by illustrative examples. The simple and effective procedure of the current technique supports its implementation to solve other nonlinear fractional problems in different areas of applied science.


Author(s):  
S. O. Ajibola ◽  
E. O. Oghre ◽  
A. G. Ariwayo ◽  
P. O. Olatunji

By fractional generalised Boussinesq equations we mean equations of the form \begin{equation} \Delta\equiv D_{t}^{2\alpha}-[\mathcal{N}(u)]_{xx}-u_{xxxx}=0, \: 0<\alpha\le1,\label{main}\nonumber \end{equation} where $\mathcal{N}(u)$ is a differentiable function and $\mathcal{N}_{uu}\ne0$ (to ensure nonlinearity). In this paper we lay emphasis on the cubic Boussinesq and Boussinesq-like equations of fractional order and we apply the Laplace homotopy analysis method (LHAM) for their rational and solitary wave solutions respectively. It is true that nonlinear fractional differential equations are often difficult to solve for their {\em exact} solutions and this single reason has prompted researchers over the years to come up with different methods and approach for their {\em analytic approximate} solutions. Most of these methods require huge computations which are sometimes complicated and a very good knowledge of computer aided softwares (CAS) are usually needed. To bridge this gap, we propose a method that requires no linearization, perturbation or any particularly restrictive assumption that can be easily used to solve strongly nonlinear fractional differential equations by hand and simple computer computations with a very quick run time. For the closed form solution, we set $\alpha =1$ for each of the solutions and our results coincides with those of others in the literature.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 331 ◽  
Author(s):  
Huda Bakodah ◽  
Abdelhalim Ebaid

The Ambartsumian equation, a linear differential equation involving a proportional delay term, is used in the theory of surface brightness in the Milky Way. In this paper, the Laplace-transform was first applied to this equation, and then the decomposition method was implemented to establish a closed-form solution. The present closed-form solution is reported for the first time for the Ambartsumian equation. Numerically, the calculations have demonstrated a rapid rate of convergence of the obtained approximate solutions, which are displayed in several graphs. It has also been shown that only a few terms of the new approximate solution were sufficient to achieve extremely accurate numerical results. Furthermore, comparisons of the present results with the existing methods in the literature were introduced.


2019 ◽  
Vol 10 (1) ◽  
pp. 122 ◽  
Author(s):  
Hassan Khan ◽  
Umar Farooq ◽  
Rasool Shah ◽  
Dumitru Baleanu ◽  
Poom Kumam ◽  
...  

In this article, a new analytical technique based on an innovative transformation is used to solve (2+time fractional-order) dimensional physical models. The proposed method is the hybrid methodology of Shehu transformation along with Adomian decomposition method. The series form solution is obtained by using the suggested method which provides the desired rate of convergence. Some numerical examples are solved by using the proposed method. The solutions of the targeted problems are represented by graphs which have confirmed closed contact between the exact and obtained solutions of the problems. Based on the novelty and straightforward implementation of the method, it is considered to be one of the best analytical techniques to solve linear and non-linear fractional partial differential equations.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hassan Khan ◽  
Adnan Khan ◽  
Maysaa Al Qurashi ◽  
Dumitru Baleanu ◽  
Rasool Shah

In this paper, a new so-called iterative Laplace transform method is implemented to investigate the solution of certain important population models of noninteger order. The iterative procedure is combined effectively with Laplace transformation to develop the suggested methodology. The Caputo operator is applied to express the noninteger derivative of fractional order. The series form solution is obtained having components of convergent behavior toward the exact solution. For justification and verification of the present method, some illustrative examples are discussed. The closed contact is observed between the obtained and exact solutions. Moreover, the suggested method has a small volume of calculations; therefore, it can be applied to handle the solutions of various problems with fractional-order derivatives.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kolade M. Owolabi

Abstract In this work, synchronization of fractional dynamics of chaotic system is presented. The suggested dynamics is governed by a system of fractional differential equations, where the fractional derivative operator is modeled by the novel Caputo operator. The nature of fractional dynamical system is non-local which often rules out a closed-form solution. As a result, an efficient numerical method based on shifted Chebychev spectral collocation method is proposed. The error and convergence analysis of this scheme is also given. Numerical results are given for different values of fractional order and other parameters when applied to solve chaotic system, to address any points or queries that may occur naturally.


2015 ◽  
Vol 70 (5) ◽  
pp. 375-382 ◽  
Author(s):  
Esmail Hesameddini ◽  
Azam Rahimi

AbstractIn this article, we propose a new approach for solving fractional partial differential equations with variable coefficients, which is very effective and can also be applied to other types of differential equations. The main advantage of the method lies in its flexibility for obtaining the approximate solutions of time fractional and space fractional equations. The fractional derivatives are described based on the Caputo sense. Our method contains an iterative formula that can provide rapidly convergent successive approximations of the exact solution if such a closed form solution exists. Several examples are given, and the numerical results are shown to demonstrate the efficiency of the newly proposed method.


2021 ◽  
Vol 6 (11) ◽  
pp. 12743-12756
Author(s):  
Ramzi B. Albadarneh ◽  
◽  
Iqbal Batiha ◽  
A. K. Alomari ◽  
Nedal Tahat ◽  
...  

<abstract><p>This work aims to propose a new simple robust power series formula with its truncation error to approximate the Caputo fractional-order operator $ D_{a}^{\alpha}y(t) $ of order $ m-1 &lt; \alpha &lt; m $, where $ m\in\mathbb{N} $. The proposed formula, which are derived with the help of the weighted mean value theorem, is expressed ultimately in terms of a fractional-order series and its reminder term. This formula is used successfully to provide approximate solutions of linear and nonlinear fractional-order differential equations in the form of series solution. It can be used to determine the analytic solutions of such equations in some cases. Some illustrative numerical examples, including some linear and nonlinear problems, are provided to validate the established formula.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document