scholarly journals An Analytical Investigation of Fractional-Order Biological Model Using an Innovative Technique

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hassan Khan ◽  
Adnan Khan ◽  
Maysaa Al Qurashi ◽  
Dumitru Baleanu ◽  
Rasool Shah

In this paper, a new so-called iterative Laplace transform method is implemented to investigate the solution of certain important population models of noninteger order. The iterative procedure is combined effectively with Laplace transformation to develop the suggested methodology. The Caputo operator is applied to express the noninteger derivative of fractional order. The series form solution is obtained having components of convergent behavior toward the exact solution. For justification and verification of the present method, some illustrative examples are discussed. The closed contact is observed between the obtained and exact solutions. Moreover, the suggested method has a small volume of calculations; therefore, it can be applied to handle the solutions of various problems with fractional-order derivatives.

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2002 ◽  
Author(s):  
Hassan Khan ◽  
Adnan Khan ◽  
Maysaa Al-Qurashi ◽  
Rasool Shah ◽  
Dumitru Baleanu

The present paper is related to the analytical solutions of some heat like equations, using a novel approach with Caputo operator. The work is carried out mainly with the use of an effective and straight procedure of the Iterative Laplace transform method. The proposed method provides the series form solution that has the desired rate of convergence towards the exact solution of the problems. It is observed that the suggested method provides closed-form solutions. The reliability of the method is confirmed with the help of some illustrative examples. The graphical representation has been made for both fractional and integer-order solutions. Numerical solutions that are in close contact with the exact solutions to the problems are investigated. Moreover, the sample implementation of the present method supports the importance of the method to solve other fractional-order problems in sciences and engineering.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 949 ◽  
Author(s):  
Hassan Eltayeb ◽  
Said Mesloub ◽  
Yahya T. Abdalla ◽  
Adem Kılıçman

The purpose of this article is to obtain the exact and approximate numerical solutions of linear and nonlinear singular conformable pseudohyperbolic equations and conformable coupled pseudohyperbolic equations through the conformable double Laplace decomposition method. Further, the numerical examples were provided in order to demonstrate the efficiency, high accuracy, and the simplicity of present method.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1850
Author(s):  
Nehad Ali Shah ◽  
Praveen Agarwal ◽  
Jae Dong Chung ◽  
Essam R. El-Zahar ◽  
Y. S. Hamed

In this article, the iteration transform method is used to evaluate the solution of a fractional-order dark optical soliton, bright optical soliton, and periodic solution of the nonlinear Schrödinger equations. The Caputo operator describes the fractional-order derivatives. The solutions of some illustrative examples are presented to show the validity of the proposed technique without using any polynomials. The proposed method provides the series form solutions, which converge to the exact results. Using the present methodology, the solutions of fractional-order problems as well as integral-order problems are calculated. The present method has less computational costs and a higher rate of convergence. Therefore, the suggested algorithm is constructive to solve other fractional-order linear and nonlinear partial differential equations.


2019 ◽  
Vol 10 (1) ◽  
pp. 122 ◽  
Author(s):  
Hassan Khan ◽  
Umar Farooq ◽  
Rasool Shah ◽  
Dumitru Baleanu ◽  
Poom Kumam ◽  
...  

In this article, a new analytical technique based on an innovative transformation is used to solve (2+time fractional-order) dimensional physical models. The proposed method is the hybrid methodology of Shehu transformation along with Adomian decomposition method. The series form solution is obtained by using the suggested method which provides the desired rate of convergence. Some numerical examples are solved by using the proposed method. The solutions of the targeted problems are represented by graphs which have confirmed closed contact between the exact and obtained solutions of the problems. Based on the novelty and straightforward implementation of the method, it is considered to be one of the best analytical techniques to solve linear and non-linear fractional partial differential equations.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haobin Liu ◽  
Hassan Khan ◽  
Saima Mustafa ◽  
Lianming Mou ◽  
Dumitru Baleanu

This research article is mainly concerned with the analytical solution of diffusion equations within a Caputo fractional-order derivative. The motivation and novelty behind the present work are the application of a sophisticated and straight forward procedure to solve diffusion equations containing a derivative of a fractional-order. The solutions of some illustrative examples are calculated to confirm the closed contact between the actual and the approximate solutions of the targeted problems. Through analysis it is shown that the proposed solution has a higher rate of convergence and provides a closed-form solution. The small number of calculations is the main advantage of the proposed method. Due to a comfortable and straight forward implementation, the suggested method can be utilized to nonlinear fractional-order problems in various applied science branches. It can be extended to solve other physical problems of fractional-order in multiple areas of applied sciences.


Author(s):  
Pongsakorn Sunthrayuth ◽  
Zeyad Al-Zhour ◽  
Yu-Ming Chu

This paper is related to the fractional view analysis of Helmholtz equations, using innovative analytical techniques. The fractional analysis of the proposed problems has been done in terms of Caputo-operator sense. In the current methodology, first, we applied the r-Laplace transform to the targeted problem. The iterative method is then implemented to obtain the series form solution. After using the inverse transform of the r-Laplace, the desire analytical solution is achieved. The suggested procedure is verified through specific examples of the fractional Helmholtz equations. The present method is found to be an effective technique having a closed resemblance with the actual solutions. The proposed technique has less computational cost and a higher rate of convergence. The suggested methods are therefore very useful to solve other systems of fractional order problems.


2016 ◽  
Vol 5 (3) ◽  
Author(s):  
Mukesh Singh ◽  
Mohd Naseem ◽  
Amit Kumar ◽  
Sunil Kumar

AbstractThis paper emphasizes on finding the solution for a foam drainageequation using the technique of modified homotopy analysis transform method (MHATM). MHATM is a new amalgamation of the homotopy analysis method and Laplace transform method with homotopy polynomial. Comparisons are made between the results of the proposed method for different values of fractional derivative α and exact solutions. Then, we analyze the results by numerical simulations, which demonstrate the simplicity and effectiveness of the present method.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Hassan Eltayeb ◽  
Adem Kılıçman ◽  
Said Mesloub

Double Laplace transform method was applied to evaluate the exact value of double infinite series. Further we generalize the current existing methods and provide some examples to illustrate and verify that the present method is a more general technique.


1985 ◽  
Vol 52 (2) ◽  
pp. 439-445 ◽  
Author(s):  
T. J. Ross

The problem of a viscoelastic Timoshenko beam subjected to a transversely applied step-loading is solved using the Laplace transform method. It is established that the support shear force is amplified more than the support bending moment for a fixed-end beam when strain rate influences are accounted for implicitly in the viscoelastic constitutive formulation.


Sign in / Sign up

Export Citation Format

Share Document