scholarly journals Analyzing Levels of Concern About Joint Punishment for Dishonesty Using the Visibility Graph Network

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhiqiang Qu ◽  
Yujie Zhang ◽  
Fan Li

Joint punishment for dishonesty is an important means of administrative regulation. This research analyzed the dynamic characteristics of time series data from the Baidu search index using the keywords “joint punishment for dishonesty” based on a visibility graph network. Applying a visibility graph algorithm, time series data from the Baidu Index was transformed into complex networks, with parameters calculated to analyze the topological structure. Results showed differences in the use of joint punishment for dishonesty in certain provinces by calculating the parameters of the time series network from January 1, 2020 to May 27, 2021; it was also shown that most of the networks were scale-free. Finally, the results of K-means clustering showed that the 31 provinces (excluding Hong Kong, Macao and Taiwan) can be divided into four types. Meanwhile, by analyzing the national Baidu Index data from 2020 to May 2021, the period of the time series data and the influence range of the central node were found.

Author(s):  
Lihua Liu ◽  
Jing Huang ◽  
Huimin Wang

In the real decision-making process, there are so many time series values that need to be aggregated. In this paper, a visibility graph power geometric (VGPG) aggregation operator is developed, which is based on the complex network and power geometric operator. Time series data are converted into a visibility graph. A visibility matrix is developed to denote the links among different time series values. A new support function based on the distance of two values are proposed to measure the support degree of each other when the two time series values have visibility. The VGPG operator considers not only the relationship but also the similarity degree between two values. Meanwhile, some properties of the VGPG operator are also investigated. Finally, a case study for water, energy, and food coupling efficiency evaluation in China is illustrated to show the effectiveness of the proposed operator. Comparative analysis with the existing research is also offered to show the advantages of the proposed method.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Dong-Rui Chen ◽  
Chuang Liu ◽  
Yi-Cheng Zhang ◽  
Zi-Ke Zhang

Understanding and predicting extreme turning points in the financial market, such as financial bubbles and crashes, has attracted much attention in recent years. Experimental observations of the superexponential increase of prices before crashes indicate the predictability of financial extremes. In this study, we aim to forecast extreme events in the stock market using 19-year time-series data (January 2000–December 2018) of the financial market, covering 12 kinds of worldwide stock indices. In addition, we propose an extremes indicator through the network, which is constructed from the price time series using a weighted visual graph algorithm. Experimental results on 12 stock indices show that the proposed indicators can predict financial extremes very well.


Physics ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 624-639
Author(s):  
Dimitrios Tsiotas ◽  
Lykourgos Magafas ◽  
Michael P. Hanias

This paper proposes a method for examining chaotic structures in semiconductor or alloy voltage oscillation time-series, and focuses on the case of the TlInTe2 semiconductor. The available voltage time-series are characterized by instabilities in negative differential resistance in the current–voltage characteristic region, and are primarily chaotic in nature. The analysis uses a complex network analysis of the time-series and applies the visibility graph algorithm to transform the available time-series into a graph so that the topological properties of the graph can be studied instead of the source time-series. The results reveal a hybrid lattice-like configuration and a major hierarchical structure corresponding to scale-free characteristics in the topology of the visibility graph, which is in accordance with the default hybrid chaotic and semi-periodic structure of the time-series. A novel conceptualization of community detection based on modularity optimization is applied to the available time-series and reveals two major communities that are able to be related to the pair-wise attractor of the voltage oscillations’ phase portrait of the TlInTe2 time-series. Additionally, the network analysis reveals which network measures are more able to preserve the chaotic properties of the source time-series. This analysis reveals metric information that is able to supplement the qualitative phase-space information. Overall, this paper proposes a complex network analysis of the time-series as a method for dealing with the complexity of semiconductor and alloy physics.


2006 ◽  
Vol 04 (02) ◽  
pp. 503-514 ◽  
Author(s):  
TOMINAGA DAISUKE ◽  
PAUL HORTON

Quantitative time-series observation of gene expression is becoming possible, for example by cell array technology. However, there are no practical methods with which to infer network structures using only observed time-series data. As most computational models of biological networks for continuous time-series data have a high degree of freedom, it is almost impossible to infer the correct structures. On the other hand, it has been reported that some kinds of biological networks, such as gene networks and metabolic pathways, may have scale-free properties. We hypothesize that the architecture of inferred biological network models can be restricted to scale-free networks. We developed an inference algorithm for biological networks using only time-series data by introducing such a restriction. We adopt the S-system as the network model, and a distributed genetic algorithm to optimize models to fit its simulated results to observed time series data. We have tested our algorithm on a case study (simulated data). We compared optimization under no restriction, which allows for a fully connected network, and under the restriction that the total number of links must equal that expected from a scale free network. The restriction reduced both false positive and false negative estimation of the links and also the differences between model simulation and the given time-series data.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Can-Zhong Yao ◽  
Ji-Nan Lin

We find that exchange rate networks are significantly similar from the perspective of topological structure, though with relatively great differences in fluctuation characteristics from perspective of exchange rate time series. First, we transform central parity rate time series of US dollar, Euro, Yen, and Sterling against CNY into exchange rate networks with visibility graph algorithm and find consistent topological characteristics in four exchange rate networks, with their average path lengths 5 and average clustering coefficients 0.7. Further, we reveal that all four transformed exchange rate networks show hierarchical structure and small-world and scale-free properties, with their hierarchy indexes 0.5 and power exponents 1.5. Both of the US dollar network and Sterling network exhibit assortative mixing features, while the Euro network and Yen network exhibit disassortative mixing features. Finally, we research community structure of exchange rate networks and uncover the fact that the communities are actually composed by large amounts of continuous time point fractions and small amounts of discrete time point fractions. In this way, we can observe that the spread of time series values corresponding to nodes inside communities is significantly lower than the spread of those values corresponding to nodes of the whole networks.


2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston

Author(s):  
Rizki Rahma Kusumadewi ◽  
Wahyu Widayat

Exchange rate is one tool to measure a country’s economic conditions. The growth of a stable currency value indicates that the country has a relatively good economic conditions or stable. This study has the purpose to analyze the factors that affect the exchange rate of the Indonesian Rupiah against the United States Dollar in the period of 2000-2013. The data used in this study is a secondary data which are time series data, made up of exports, imports, inflation, the BI rate, Gross Domestic Product (GDP), and the money supply (M1) in the quarter base, from first quarter on 2000 to fourth quarter on 2013. Regression model time series data used the ARCH-GARCH with ARCH model selection indicates that the variables that significantly influence the exchange rate are exports, inflation, the central bank rate and the money supply (M1). Whereas import and GDP did not give any influence.


2016 ◽  
Vol 136 (3) ◽  
pp. 363-372
Author(s):  
Takaaki Nakamura ◽  
Makoto Imamura ◽  
Masashi Tatedoko ◽  
Norio Hirai

Sign in / Sign up

Export Citation Format

Share Document