scholarly journals Central Density and Low-Mode Perturbation Control of Inertial Confinement Fusion Dynamic-Shell Targets

2021 ◽  
Vol 9 ◽  
Author(s):  
W. Trickey ◽  
V. N. Goncharov ◽  
I. V. Igumenshchev ◽  
A. Shvydky ◽  
T. J. B Collins ◽  
...  

The dynamic-shell target is a new class of design for inertial confinement fusion (ICF). These targets address some of the target fabrication challenges prevalent in current ICF targets and take advantage of advances in manufacturing technologies. This study first examines how the dynamic-shell design can be used to control the density of the central region and therefore convergence ratio, thus expanding the design space for ICF. Additionally, the concern of low-mode perturbation growth is considered. A new class of high-performing beam configurations, based on icosahedral polyhedra and charged-particle simulations is proposed. These configurations achieve low levels of irradiation nonuniformity through selection of beam shapes that suppress the dominant symmetrical mode.

Author(s):  
C. W. Price ◽  
E. F. Lindsey

Thickness measurements of thin films are performed by both energy-dispersive x-ray spectroscopy (EDS) and x-ray fluorescence (XRF). XRF can measure thicker films than EDS, and XRF measurements also have somewhat greater precision than EDS measurements. However, small components with curved or irregular shapes that are used for various applications in the the Inertial Confinement Fusion program at LLNL present geometrical problems that are not conducive to XRF analyses but may have only a minimal effect on EDS analyses. This work describes the development of an EDS technique to measure the thickness of electroless nickel deposits on gold substrates. Although elaborate correction techniques have been developed for thin-film measurements by x-ray analysis, the thickness of electroless nickel films can be dependent on the plating bath used. Therefore, standard calibration curves were established by correlating EDS data with thickness measurements that were obtained by contact profilometry.


2020 ◽  
Vol 36 ◽  
pp. 100749 ◽  
Author(s):  
R.E. Olson ◽  
R.J. Leeper ◽  
S.H. Batha ◽  
R.R. Peterson ◽  
P.A. Bradley ◽  
...  

2021 ◽  
Vol 28 (3) ◽  
pp. 032713
Author(s):  
Dongguo Kang ◽  
Huasen Zhang ◽  
Shiyang Zou ◽  
Wudi Zheng ◽  
Shaoping Zhu ◽  
...  

2021 ◽  
Vol 92 (7) ◽  
pp. 073505
Author(s):  
T. J. Awe ◽  
L. Perea ◽  
J. C. Hanson ◽  
A. J. York ◽  
D. W. Johnson ◽  
...  

2021 ◽  
Vol 141 ◽  
pp. 107158
Author(s):  
Jiamei Li ◽  
Dawei Li ◽  
Hui Yu ◽  
Fengnian Lv ◽  
Qiong Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document