scholarly journals Biomaterials and bioactive molecules to drive differentiation in striated muscle tissue engineering

2015 ◽  
Vol 6 ◽  
Author(s):  
Valentina Di Felice ◽  
Giancarlo Forte ◽  
Dario Coletti

2015 ◽  
Vol 88 ◽  
pp. 37-52 ◽  
Author(s):  
Mattia Quattrocelli ◽  
Maurilio Sampaolesi




Author(s):  
Selva Bilge ◽  
Emre Ergene ◽  
Ebru Talak ◽  
Seyda Gokyer ◽  
Yusuf Osman Donar ◽  
...  

AbstractSkeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.





Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 164-181
Author(s):  
Joyita Sarkar ◽  
Swapnil C. Kamble ◽  
Nilambari C. Kashikar

Three-dimensional (3D) printing techniques have revolutionized the field of tissue engineering. This is especially favorable to construct intricate tissues such as liver, as 3D printing allows for the precise delivery of biomaterials, cells and bioactive molecules in complex geometries. Bioinks made of polymers, of both natural and synthetic origin, have been very beneficial to printing soft tissues such as liver. Using polymeric bioinks, 3D hepatic structures are printed with or without cells and biomolecules, and have been used for different tissue engineering applications. In this review, with the introduction to basic 3D printing techniques, we discuss different natural and synthetic polymers including decellularized matrices that have been employed for the 3D bioprinting of hepatic structures. Finally, we focus on recent advances in polymeric bioinks for 3D hepatic printing and their applications. The studies indicate that much work has been devoted to improvising the design, stability and longevity of the printed structures. Others focus on the printing of tissue engineered hepatic structures for applications in drug screening, regenerative medicine and disease models. More attention must now be diverted to developing personalized structures and stem cell differentiation to hepatic lineage.



Marine Drugs ◽  
2011 ◽  
Vol 9 (9) ◽  
pp. 1664-1681 ◽  
Author(s):  
Karim Senni ◽  
Jessica Pereira ◽  
Farida Gueniche ◽  
Christine Delbarre-Ladrat ◽  
Corinne Sinquin ◽  
...  


2017 ◽  
Vol 242 (18) ◽  
pp. 1772-1785 ◽  
Author(s):  
Stanislav Žiaran ◽  
Martina Galambošová ◽  
L'uboš Danišovič

The purpose of this article was to perform a systematic review of the recent literature on urethral tissue engineering. A total of 31 articles describing the use of tissue engineering for urethra reconstruction were included. The obtained results were discussed in three groups: cells, scaffolds, and clinical results of urethral reconstructions using these components. Stem cells of different origin were used in many experimental studies, but only autologous urothelial cells, fibroblasts, and keratinocytes were applied in clinical trials. Natural and synthetic scaffolds were studied in the context of urethral tissue engineering. The main advantage of synthetic ones is the fact that they can be obtained in unlimited amount and modified by different techniques, but scaffolds of natural origin normally contain chemical groups and bioactive proteins which increase the cell attachment and may promote the cell proliferation and differentiation. The most promising are smart scaffolds delivering different bioactive molecules or those that can be tubularized. In two clinical trials, only onlay-fashioned transplants were used for urethral reconstruction. However, the very promising results were obtained from animal studies where tubularized scaffolds, both non-seeded and cell-seeded, were applied. Impact statement The main goal of this article was to perform a systematic review of the recent literature on urethral tissue engineering. It summarizes the most recent information about cells, seeded or non-seeded scaffolds and clinical application with respect to regeneration of urethra.



Gene Therapy ◽  
2018 ◽  
Vol 26 (1-2) ◽  
pp. 16-28 ◽  
Author(s):  
Bin Ren ◽  
Volker M. Betz ◽  
Christian Thirion ◽  
Michael Salomon ◽  
Volkmar Jansson ◽  
...  


2009 ◽  
Vol 21 (03) ◽  
pp. 149-155 ◽  
Author(s):  
Hsu-Wei Fang

Cartilage injuries may be caused by trauma, biomechanical imbalance, or degenerative changes of joint. Unfortunately, cartilage has limited capability to spontaneous repair once damaged and may lead to progressive damage and degeneration. Cartilage tissue-engineering techniques have emerged as the potential clinical strategies. An ideal tissue-engineering approach to cartilage repair should offer good integration into both the host cartilage and the subchondral bone. Cells, scaffolds, and growth factors make up the tissue engineering triad. One of the major challenges for cartilage tissue engineering is cell source and cell numbers. Due to the limitations of proliferation for mature chondrocytes, current studies have alternated to use stem cells as a potential source. In the recent years, a lot of novel biomaterials has been continuously developed and investigated in various in vitro and in vivo studies for cartilage tissue engineering. Moreover, stimulatory factors such as bioactive molecules have been explored to induce or enhance cartilage formation. Growth factors and other additives could be added into culture media in vitro, transferred into cells, or incorporated into scaffolds for in vivo delivery to promote cellular differentiation and tissue regeneration.Based on the current development of cartilage tissue engineering, there exist challenges to overcome. How to manipulate the interactions between cells, scaffold, and signals to achieve the moderation of implanted composite differentiate into moderate stem cells to differentiate into hyaline cartilage to perform the optimum physiological and biomechanical functions without negative side effects remains the target to pursue.



Sign in / Sign up

Export Citation Format

Share Document