scholarly journals Clinical Interpretation of Cardiopulmonary Exercise Testing: Current Pitfalls and Limitations

2021 ◽  
Vol 12 ◽  
Author(s):  
J. Alberto Neder ◽  
Devin B. Phillips ◽  
Mathieu Marillier ◽  
Anne-Catherine Bernard ◽  
Danilo C. Berton ◽  
...  

Several shortcomings on cardiopulmonary exercise testing (CPET) interpretation have shed a negative light on the test as a clinically useful tool. For instance, the reader should recognize patterns of dysfunction based on clusters of variables rather than relying on rigid interpretative algorithms. Correct display of key graphical data is of foremost relevance: prolixity and redundancy should be avoided. Submaximal dyspnea ratings should be plotted as a function of work rate (WR) and ventilatory demand. Increased work of breathing and/or obesity may normalize peak oxygen uptake (V̇O2) despite a low peak WR. Among the determinants of V̇O2, only heart rate is measured during non-invasive CPET. It follows that in the absence of findings suggestive of severe impairment in O2delivery, the boundaries between inactivity and early cardiovascular disease are blurred in individual subjects. A preserved breathing reserve should not be viewed as evidence that “the lungs” are not limiting the subject. In this context, measurements of dynamic inspiratory capacity are key to uncover abnormalities germane to exertional dyspnea. A low end-tidal partial pressure for carbon dioxide may indicate either increased “wasted” ventilation or alveolar hyperventilation; thus, direct measurements of arterial (or arterialized) PO2might be warranted. Differentiating a chaotic breathing pattern from the normal breath-by-breath noise might be complex if the plotted data are not adequately smoothed. A sober recognition of these limitations, associated with an interpretation report free from technicalities and convoluted terminology, is crucial to enhance the credibility of CPET in the eyes of the practicing physician.

Author(s):  
Sahachat Aueyingsak ◽  
Wilaiwan Khrisanapant ◽  
Upa Kukongviriyapun ◽  
Orapin Pasurivong ◽  
Pailin Ratanawatkul ◽  
...  

Background: N-terminal pro-brain natriuretic peptide (NT-proBNP) and cardiopulmonary exercise testing (CPET) are useful for severity assessment in patients with pulmonary hypertension (PH). Correlations between these tests in pre-capillary PH patients is less well studied. Methods: We studied 23 patients with pre-capillary PH: 8 with idiopathic pulmonary arterial hypertension (IPAH), 6 with systemic sclerosis-associated PAH (SSc-PAH), and 9 with chronic thromboembolic pulmonary hypertension (CTEPH). Clinical evaluation, NT-proBNP levels, six-minute walking test (6MWT), spirometry, and CPET were evaluated on the same day. Correlation between NT-proBNP levels and CPET parameters were investigated. Results: In all patients, NT-proBNP levels were significantly correlated with peak oxygen uptake (VO2) ( r = −0.47), peak oxygen pulse ( r = −0.43), peak cardiac output (CO) ( r = −0.57), peak end-tidal partial pressure of carbon dioxide (PETCO2) ( r = −0.74), ventilatory equivalent to carbon dioxide (VE/VCO2) at anaerobic threshold (AT) ( r = 0.73), and VE/VCO2 slope ( r = 0.64). Significant correlations between NT-proBNP levels and peak PETCO2 and VE/VCO2 were found in IPAH and CTEPH subgroups, and a significant correlation between NT-proBNP levels and VO2 at AT was found in the CTEPH subgroup. No significant correlation was found in the SSc-PAH subgroup. Conclusion: NT-proBNP levels were significantly correlated with CPET parameters in patients with IPAH and CTEPH subgroups, but not in SSc-PAH subgroup. A further study with larger population is required to confirm these preliminary findings.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 364
Author(s):  
Keisuke Miki

In chronic obstructive pulmonary disease (COPD), exertional dyspnea, which increases with the disease’s progression, reduces exercise tolerance and limits physical activity, leading to a worsening prognosis. It is necessary to understand the diverse mechanisms of dyspnea and take appropriate measures to reduce exertional dyspnea, as COPD is a systemic disease with various comorbidities. A treatment focusing on the motor pathophysiology related to dyspnea may lead to improvements such as reducing dynamic lung hyperinflation, respiratory and metabolic acidosis, and eventually exertional dyspnea. However, without cardiopulmonary exercise testing (CPET), it may be difficult to understand the pathophysiological conditions during exercise. CPET facilitates understanding of the gas exchange and transport associated with respiration-circulation and even crosstalk with muscles, which is sometimes challenging, and provides information on COPD treatment strategies. For respiratory medicine department staff, CPET can play a significant role when treating patients with diseases that cause exertional dyspnea. This article outlines the advantages of using CPET to evaluate exertional dyspnea in patients with COPD.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Laura Jones ◽  
Laura Tan ◽  
Suzanne Carey-Jones ◽  
Nathan Riddell ◽  
Richard Davies ◽  
...  

Abstract Background Consumer wrist-worn wearable activity monitors are widely available, low cost and are able to provide a direct measurement of several markers of physical activity. Despite this, there is limited data on their use in perioperative risk prediction. We explored whether these wearables could accurately approximate metrics (anaerobic threshold, peak oxygen uptake and peak work) derived using formalised cardiopulmonary exercise testing (CPET) in patients undergoing high-risk surgery. Methods Patients scheduled for major elective intra-abdominal surgery and undergoing CPET were included. Physical activity levels were estimated through direct measures (step count, floors climbed and total distance travelled) obtained through continuous wear of a wrist worn activity monitor (Garmin Vivosmart HR+) for 7 days prior to surgery and self-report through completion of the short International Physical Activity Questionnaire (IPAQ). Correlations and receiver operating characteristic (ROC) curve analysis explored the relationships between parameters provided by CPET and physical activity. Device selection Our choice of consumer wearable device was made to maximise feasibility outcomes for this study. The Garmin Vivosmart HR+ had the longest battery life and best waterproof characteristics of the available low-cost devices. Results Of 55 patients invited to participate, 49 (mean age 65.3 ± 13.6 years; 32 males) were enrolled; 37 provided complete wearable data for analyses and 36 patients provided full IPAQ data. Floors climbed, total steps and total travelled as measured by the wearable device all showed moderate correlation with CPET parameters of peak oxygen uptake (peak VO2) (R = 0.57 (CI 0.29–0.76), R = 0.59 (CI 0.31–0.77) and R = 0.62 (CI 0.35–0.79) respectively), anaerobic threshold (R = 0.37 (CI 0.01–0.64), R = 0.39 (CI 0.04–0.66) and R = 0.42 (CI 0.07–0.68) respectively) and peak work (R = 0.56 (CI 0.27–0.75), R = 0.48 (CI 0.17–0.70) and R = 0.50 (CI 0.2–0.72) respectively). Receiver operator curve (ROC) analysis for direct and self-reported measures of 7-day physical activity could accurately approximate the ventilatory equivalent for carbon dioxide (VE/VCO2) and the anaerobic threshold. The area under these curves was 0.89 for VE/VCO2 and 0.91 for the anaerobic threshold. For peak VO2 and peak work, models fitted using just the wearable data were 0.93 for peak VO2 and 1.00 for peak work. Conclusions Data recorded by the wearable device was able to consistently approximate CPET results, both with and without the addition of patient reported activity measures via IPAQ scores. This highlights the potential utility of wearable devices in formal assessment of physical functioning and suggests they could play a larger role in pre-operative risk assessment. Ethics This study entitled “uSing wearable TEchnology to Predict perioperative high-riSk patient outcomes (STEPS)” gained favourable ethical opinion on 24 January 2017 from the Welsh Research Ethics Committee 3 reference number 17/WA/0006. It was registered on ClinicalTrials.gov with identifier NCT03328039.


2014 ◽  
Vol 36 (2) ◽  
pp. 92-98
Author(s):  
Milena Pelosi Rizk Sperling ◽  
Flávia Cristina Rossi Caruso ◽  
Renata Gonçalves Mendes ◽  
Daniela Bassi Dutra ◽  
Vivian Maria Arakelian ◽  
...  

Author(s):  
Maria Simakova ◽  
Irina Zlobina ◽  
Aelita Berezina ◽  
Konstantin Pishchulov ◽  
Narek Marykyan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document