scholarly journals Skeletal Muscle and Bone – Emerging Targets of Fibroblast Growth Factor-21

2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Sun ◽  
Matthew Sherrier ◽  
Hongshuai Li

Fibroblast growth factor 21 (FGF21) is an atypical member of the FGF family, which functions as a powerful endocrine and paracrine regulator of glucose and lipid metabolism. In addition to liver and adipose tissue, recent studies have shown that FGF21 can also be produced in skeletal muscle. As the most abundant tissue in the human body, skeletal muscle has become increasingly recognized as a major site of metabolic activity and an important modulator of systemic metabolic homeostasis. The function and mechanism of action of muscle-derived FGF21 have recently gained attention due to the findings of considerably increased expression and secretion of FGF21 from skeletal muscle under certain pathological conditions. Recent reports regarding the ectopic expression of FGF21 from skeletal muscle and its potential effects on the musculoskeletal system unfolds a new chapter in the story of FGF21. In this review, we summarize the current knowledge base of muscle-derived FGF21 and the possible functions of FGF21 on homeostasis of the musculoskeletal system with a focus on skeletal muscle and bone.

Diabetes ◽  
2018 ◽  
Vol 67 (4) ◽  
pp. 594-606 ◽  
Author(s):  
Magdalene K. Montgomery ◽  
Ruzaidi Mokhtar ◽  
Jacqueline Bayliss ◽  
Helena C. Parkington ◽  
Victor M. Suturin ◽  
...  

2017 ◽  
Vol 313 (3) ◽  
pp. E292-E302 ◽  
Author(s):  
Ting Xie ◽  
Po Sing Leung

Fibroblast growth factor 21 (FGF21) is a potent endocrine regulator with physiological effects on glucose and lipid metabolism and thus garners much attention for its translational potential for the management of obesity and related metabolic syndromes. FGF21 is mainly expressed in several metabolically active tissue organs, such as the liver, adipose tissue, skeletal muscle, and pancreas, with profound effects and therapeutic relevance. Emerging experimental and clinical data point to the demonstrated metabolic benefits of FGF21, which include, but are not limited to, weight loss, glucose and lipid metabolism, and insulin sensitivity. In addition, FGF21 also acts directly through its coreceptor β-klotho in the brain to alter light-dark cycle activity. In this review, we critically appraise current advances in understanding the physiological actions of FGF21 and its role as a biomarker of various metabolic diseases, especially type 2 diabetes mellitus. We also discuss the potentially exciting role of FGF21 in improving our health and prolonging our life span. This information will provide a fuller understanding for further research into FGF21, as well as providing a scientific basis for potentially establishing health care guidelines for this promising molecule.


2011 ◽  
pp. 757-767 ◽  
Author(s):  
T. KOTULÁK ◽  
J. DRÁPALOVÁ ◽  
P. KOPECKÝ ◽  
Z. LACINOVÁ ◽  
P. KRAMÁŘ ◽  
...  

We studied the changes in serum fibroblast growth factor-21 (FGF-21) concentrations, its mRNA, and protein expression in skeletal muscle and adipose tissue of 15 patients undergoing cardiac surgery. Blood samples were obtained: prior to initiation of anesthesia, prior to the start of extracorporeal circulation, upon completion of the surgery, and 6, 24, 48, and 96 hours after the end of the surgery. Tissue sampling was performed at the start and end of surgery. The mean baseline serum FGF-21 concentration was 63.1 (43.03-113.95) pg/ml and it increased during surgery with peak 6 hours after its end [385.5 (274.55-761.65) pg/ml, p<0.001], and returned to baseline value [41.4 (29.15-142.83) pg/ml] 96 hours after the end of the surgery. Serum glucose, insulin, CRP, IL-6, IL-8, MCP-1, and TNF-alpha concentrations significantly increased during the surgery. Baseline FGF-21 mRNA expression in skeletal muscle was higher than in both adipose tissue depots and it was not affected by the surgery. Epicardial fat FGF-21 mRNA increased after surgery. Muscle FGF-21 mRNA positively correlated with blood glucose levels at the end of the surgery. Our data suggest a possible role of FGF-21 in the regulation of glucose metabolism and insulin sensitivity in surgery-related stress.


2020 ◽  
Vol 65 (3) ◽  
pp. 85-95
Author(s):  
G Rosales-Soto ◽  
A Diaz-Vegas ◽  
M Casas ◽  
A Contreras-Ferrat ◽  
E Jaimovich

Fibroblast growth factor 21 (FGF21) is a pleiotropic peptide hormone that is considered a myokine playing a role in a variety of endocrine functions, including regulation of glucose transport and lipid metabolism. Although FGF21 has been associated with glucose metabolism in skeletal muscle cells, its cellular mechanism in adult skeletal muscle fibers glucose uptake is poorly understood. In the present study, we found that FGF21 induced a dose−response effect, increasing glucose uptake in skeletal muscle fibers from the flexor digitorum brevis muscle of mice, evaluated using the fluorescent glucose analog 2-NBDG (300 µM) in single living fibers. This effect was prevented by the use of either cytochalasin B (5 µM) or indinavir (100 µM), both antagonists of GLUT4 activity. The use of PI3K inhibitors such as LY294002 (50 µM) completely prevented the FGF21-dependent glucose uptake. In fibers electroporated with the construct encoding GLUT4myc-eGFP chimera and stimulated with FGF21 (100 ng/mL), a strong sarcolemmal GLUT4 label was detected. This effect promoted by FGF21 was demonstrated to be dependent on atypical PKC-ζ, by using selective PKC inhibitors. FGF21 at low concentrations potentiated the effect of insulin on glucose uptake but at high concentrations, completely inhibited the uptake in the presence of insulin. These results suggest that FGF21 regulates glucose uptake by a mechanism mediated by GLUT4 and dependent on atypical PKC-ζ in skeletal muscle.


Diabetes ◽  
2015 ◽  
Vol 64 (8) ◽  
pp. 2757-2768 ◽  
Author(s):  
Lydia-Ann L.S. Harris ◽  
James R. Skinner ◽  
Trevor M. Shew ◽  
Terri A. Pietka ◽  
Nada A. Abumrad ◽  
...  

2009 ◽  
Vol 5 (4) ◽  
pp. 216-220 ◽  
Author(s):  
Daniel Cuevas-Ramos ◽  
Paloma Almeda-Valdes ◽  
Carlos Aguilar-Salinas ◽  
Gabriel Cuevas-Ramos ◽  
Andres Cuevas-Sosa ◽  
...  

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Manuel Arias‐Calderón ◽  
Camilo Morales ◽  
Walter Vasquez ◽  
Nadia Hernández ◽  
Enrique Jaimovich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document