scholarly journals Myogenetic Oligodeoxynucleotide (myoDN) Recovers the Differentiation of Skeletal Muscle Myoblasts Deteriorated by Diabetes Mellitus

2021 ◽  
Vol 12 ◽  
Author(s):  
Shunichi Nakamura ◽  
Shinichi Yonekura ◽  
Takeshi Shimosato ◽  
Tomohide Takaya

Skeletal muscle wasting in patients with diabetes mellitus (DM) is a complication of decreased muscle mass and strength, and is a serious risk factor that may result in mortality. Deteriorated differentiation of muscle precursor cells, called myoblasts, in DM patients is considered to be one of the causes of muscle wasting. We recently developed myogenetic oligodeoxynucleotides (myoDNs), which are 18-base single-strand DNAs that promote myoblast differentiation by targeting nucleolin. Herein, we report the applicability of a myoDN, iSN04, to myoblasts isolated from patients with type 1 and type 2 DM. Myogenesis of DM myoblasts was exacerbated concordantly with a delayed shift of myogenic transcription and induction of interleukins. Analogous phenotypes were reproduced in healthy myoblasts cultured with excessive glucose or palmitic acid, mimicking hyperglycemia or hyperlipidemia. iSN04 treatment recovered the deteriorated differentiation of plural DM myoblasts by downregulating myostatin and interleukin-8 (IL-8). iSN04 also ameliorated the impaired myogenic differentiation induced by glucose or palmitic acid. These results demonstrate that myoDNs can directly facilitate myoblast differentiation in DM patients, making them novel candidates for nucleic acid drugs to treat muscle wasting in patients with DM.

2021 ◽  
Author(s):  
Shunichi Nakamura ◽  
Shinichi Yonekura ◽  
Takeshi Shimosato ◽  
Tomohide Takaya

AbstractSarcopenic obesity is a complication of decreased muscle mass and strength associated with obesity, and sarcopenia associated with diabetes mellitus (DM) is a serious risk factor that may result in mortality. Deteriorated differentiation of muscle precursor cells, called myoblasts, in DM patients is considered to be one of the causes of muscle atrophy. We recently developed myogenetic oligodeoxynucleotides (myoDNs), which are 18-base single-strand DNAs that promote myoblast differentiation by targeting nucleolin. Herein, we report the applicability of a myoDN, iSN04, to myoblasts isolated from patients with type 1 and type 2 DM. Myogenesis of DM myoblasts was exacerbated concordantly with a delayed shift of myogenic transcription and induction of interleukins. Analogous phenotypes were reproduced in healthy myoblasts cultured with excessive glucose or palmitic acid, mimicking hyperglycemia or hyperlipidemia. iSN04 treatment recovered the deteriorated differentiation of plural DM myoblasts by downregulating myostatin and interleukin-8. iSN04 also ameliorated the impaired myogenic differentiation induced by glucose or palmitic acid. These results demonstrate that myoDNs can directly facilitate myoblast differentiation in DM patients, making them novel candidates for nucleic acid drugs to treat sarcopenic obesity.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Tadashi Yoshida ◽  
Patrice Delafontaine

Patients with advanced congestive heart failure (CHF) or chronic kidney disease (CKD) often have increased angiotensin II (Ang II) levels and cachexia. We previously demonstrated that Ang II infusion in rodents causes skeletal muscle wasting and decreases muscle regenerative potential via Ang II type 1 receptor (AT1R) signaling, likely contributing to cachexia in CHF and CKD. However, the potential role of Ang II type 2 receptor (AT2R) signaling in skeletal muscle physiology remains unknown. We found that AT2R expression was robustly increased in mouse skeletal myoblasts during differentiation, suggesting that the AT2R plays an important role in skeletal muscle regeneration. To test this hypothesis, we infused mice with AT2R antagonist PD123319 (PD, 30 mg/kg/d) or agonist CGP123319 (CGP, 1 μg/kg/min) during cardiotoxin (CTX)-induced muscle injury and regeneration. PD reduced the size of regenerating myofibers (727.5±54.6 and 516.0±37.0 μm2 in sham and PD, respectively, p<0.05) and expression of the myoblast differentiation markers myogenin and eMyHC (56.9% and 40.2% decrease in PD, respectively. p<0.01), whereas CGP had the opposite effects. siRNA mediated AT2R knockdown in mouse primary myoblasts suppressed the increase of myogenin and desmin, resulting in lowered differentiation. We analyzed changes in phosphoprotein levels in myoblasts after AT2R knockdown by phosphoprotein array and identified multiple changes, including increased phospho-ERK1/2 levels. Importantly, inhibition of ERK1/2 restored normal myoblast differentiation in the setting of AT2R knockdown, suggesting the AT2R positively regulates myoblast differentiation by reducing ERK1/2 activity. Furthermore, we found that skeletal muscle regeneration was reduced (decreased regenerating myofiber size and myogenin/desmin expression) in a mouse myocardial infarction model of CHF, concomitantly with markedly blunted increase of AT2R expression, strongly suggesting that the AT2R plays an important role in the reduction of skeletal muscle function in CHF. These data indicate that AT2R signaling positively regulates myoblast differentiation and potentiates skeletal muscle regeneration, providing a new therapeutic target in wasting disorders such as CHF and CKD.


Author(s):  
Larisa Dmitrievna Popovich ◽  
Svetlana Valentinovna Svetlichnaya ◽  
Aleksandr Alekseevich Moiseev

Diabetes – a disease in which the effect of the treatment substantially depends on the patient. Known a study showed that the use of glucometers with the technology of three-color display of test results facilitates self-monitoring of blood sugar and leads to a decrease in glycated hemoglobin (HbAlc). Purpose of the study: to modeling the impact of using of a glucometer with a color-coded display on the clinical outcomes of diabetes mellitus and calculating, the potential economic benefits of reducing the hospitalization rate of patients with diabetes. Material and methods. Based on data from two studies (O. Schnell et al. and M. Baxter et al.) simulation of the reduction in the number of complications with the use of a glucometer with a color indication. In a study by O. Schnell et al. a decrease of HbA1c by 0.69 percent is shown when using the considered type of glucometers, which was the basis of the model. Results. In the model, the use of a glucometer with a color-coded display for type 1 diabetes led to a decrease in the total number of complications by 9.2 thousand over 5 years per a cohort of 40 thousand patients with different initial levels of HbA1c. In a cohort of 40 thousand patients with type 2 diabetes, the simulated number of prevented complications was 1.7 thousand over 5 years. When extrapolating these data to all patients with diabetes included in the federal register of diabetes mellitus (FRD), the number of prevented complications was 55.4 thousand cases for type 1 diabetes and 67.1 thousand cases for type 2 diabetes. The possible economic effect from the use of the device by all patients with a diagnosis of diabetes, which are included in the FRD, estimated at 1.5 billion rubles for a cohort of patients with type 1 diabetes and 5.3 billion rubles for patients with type 2 diabetes. Conclusion. Improving the effectiveness of self-monitoring, which is the result of the use of glucometers with color indicators, can potentially significantly reduce the incidence of complications in diabetes and thereby provide significant economic benefits to society.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222607 ◽  
Author(s):  
Jakub Dworzański ◽  
Bartłomiej Drop ◽  
Ewa Kliszczewska ◽  
Małgorzata Strycharz-Dudziak ◽  
Małgorzata Polz-Dacewicz

2017 ◽  
Vol 25 (4) ◽  
pp. 443-449
Author(s):  
Claudia Camila Peruzzo Lopes ◽  
Priscila do Monte Ribeiro Busato ◽  
Maira Fernanda Michelin Mânica ◽  
Marcela Chiquetto de Araújo ◽  
Muriel Machado Marquez Zampiva ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Farzad Asadi ◽  
Savita Dhanvantari

Patients with diabetes mellitus exhibit hyperglucagonemia, or excess glucagon secretion, which may be the underlying cause of the hyperglycemia of diabetes. Defective alpha cell secretory responses to glucose and paracrine effectors in both Type 1 and Type 2 diabetes may drive the development of hyperglucagonemia. Therefore, uncovering the mechanisms that regulate glucagon secretion from the pancreatic alpha cell is critical for developing improved treatments for diabetes. In this review, we focus on aspects of alpha cell biology for possible mechanisms for alpha cell dysfunction in diabetes: proglucagon processing, intrinsic and paracrine control of glucagon secretion, secretory granule dynamics, and alterations in intracellular trafficking. We explore possible clues gleaned from these studies in how inhibition of glucagon secretion can be targeted as a treatment for diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document