scholarly journals The Evolving Role of Next-Generation Sequencing in Screening and Diagnosis of Hemoglobinopathies

2021 ◽  
Vol 12 ◽  
Author(s):  
Ahlem Achour ◽  
Tamara T. Koopmann ◽  
Frank Baas ◽  
Cornelis L. Harteveld

During the last few years, next-generation sequencing (NGS) has undergone a rapid transition from a research setting to a clinical application, becoming the method of choice in many clinical genetics laboratories for the detection of disease-causing variants in a variety of genetic diseases involving multiple genes. The hemoglobinopathies are the most frequently found Mendelian inherited monogenic disease worldwide and are composed of a complex group of disorders frequently involving the inheritance of more than one abnormal gene. This review aims to present the role of NGS in both screening and pre- and post-natal diagnostics of the hemoglobinopathies, and the added value of NGS is discussed based on the results described in the literature. Overall, NGS has an added value in large-scale high throughput carrier screening and in the complex cases for which common molecular techniques have some inadequacies. It is proven that the majority of thalassemia cases and Hb variants can be diagnosed using routine analysis involving a combined approach of hematology, hemoglobin separation, and classical DNA methods; however, we conclude that NGS can be a useful addition to the existing methods in the diagnosis of these disorders.

2019 ◽  
Vol 40 (1_suppl) ◽  
pp. 29S-31S
Author(s):  
Khaled Emara ◽  
Amiethab Aiyer ◽  
Ryan Rogero

Recommendation: Molecular techniques, particularly next-generation sequencing and the Ibis T5000 technology, have the potential to be used as an important adjunct in the diagnosis of bacterial infection following total ankle arthroplasty (TAA), although sufficient clinical evidence is lacking. Level of Evidence: Limited. Delegate Vote: Agree: 100%, Disagree: 0%, Abstain: 0% (Unanimous, Strongest Consensus)


2019 ◽  
Vol 25 (31) ◽  
pp. 3350-3357 ◽  
Author(s):  
Pooja Tripathi ◽  
Jyotsna Singh ◽  
Jonathan A. Lal ◽  
Vijay Tripathi

Background: With the outbreak of high throughput next-generation sequencing (NGS), the biological research of drug discovery has been directed towards the oncology and infectious disease therapeutic areas, with extensive use in biopharmaceutical development and vaccine production. Method: In this review, an effort was made to address the basic background of NGS technologies, potential applications of NGS in drug designing. Our purpose is also to provide a brief introduction of various Nextgeneration sequencing techniques. Discussions: The high-throughput methods execute Large-scale Unbiased Sequencing (LUS) which comprises of Massively Parallel Sequencing (MPS) or NGS technologies. The Next geneinvolved necessarily executes Largescale Unbiased Sequencing (LUS) which comprises of MPS or NGS technologies. These are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS, an entire human genome can be sequenced within a single day. Conclusion: Analysis of NGS data unravels important clues in the quest for the treatment of various lifethreatening diseases and other related scientific problems related to human welfare.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 120
Author(s):  
Andrés Lizasoain ◽  
Daiana Mir ◽  
Gisella Masachessi ◽  
Adrián Farías ◽  
Nélida Rodríguez-Osorio ◽  
...  

The knowledge about circulation of Human Enteroviruses (EVs) obtained through medical diagnosis in Argentina is scarce. Wastewater samples monthly collected in Córdoba, Argentina during 2011–2012, and then in 2017–2018 were retrospectively studied to assess the diversity of EVs in the community. Partial VP1 gene was amplified by PCR from wastewater concentrates, and amplicons were subject of next-generation sequencing and genetic analyses. There were 41 EVs detected, from which ~50% had not been previously reported in Argentina. Most of the characterized EVs (60%) were detected at both sampling periods, with similar values of intratype nucleotide diversity. Exceptions were enterovirus A71, coxsackievirus B4, echovirus 14, and echovirus 30, which diversified in 2017–2018. There was a predominance of types from EV-C in 2017–2018, evidencing a common circulation of these types throughout the year in the community. Interestingly, high genetic similarity was evidenced among environmental strains of echovirus 30 circulating in 2011–2012 and co-temporal isolates obtained from patients suffering aseptic meningitis in different locations of Argentina. This study provides an updated insight about EVs circulating in an important region of South America, and suggests a valuable role of wastewater-based epidemiology in predicting outbreaks before the onset of cases in the community.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0139868 ◽  
Author(s):  
Mohan A. V. S. K. Katta ◽  
Aamir W. Khan ◽  
Dadakhalandar Doddamani ◽  
Mahendar Thudi ◽  
Rajeev K. Varshney

2020 ◽  
Author(s):  
Huaiyu Gu ◽  
Zhen Zhang ◽  
Yi-shuang Xiao ◽  
Ru Shen ◽  
Hong-chao Jiang ◽  
...  

Abstract Background: Retinoblastoma is a rare intraocular malignancy and typically initiated by inactivating biallelic mutations of RB1 gene. Each year, ~8,000 children worldwide are diagnosed for retinoblastoma. In high-income countries, patient survival is over 95% while low-income countries is ~30%.If disease is diagnosed early and treated in centers specializing in retinoblastoma, the survival might exceed 95% and many eyes could be safely treated and support a lifetime of good vision. In China, approximate 1,100 newly diagnosed cases are expected annually and 28 hospitals covering 25 provinces established centers classified by expertise and resources for better treatment options and follow-up. Comparing with other province of eastern China, Yunnan province is remote geographically. This might result that healthcare staff have low awareness of the role of genetic testing in management and screening in families.Methods: The patients with retinoblastoma were selected in Yunnan. DNA from blood was used for targeted gene sequencing. Then, an in-house bioinformatics pipeline was done to detect both single nucleotide variants and small insertions/deletions. The pathogenic mutations were identified and further confirmed by conventional methods and cosegregation in families.Results: Using our approach, targeted next generation sequencing was used to detect the mutation of these 12 probands. Bioinformatic predictions showed that nine mutations were found in our study and four were novel pathogenic variants in these nine mutations.Conclusions: It’s the first report to describe RB1 mutations in Yunnan children with retinoblastoma. This study would improve role of genetic testing for management and family screening.


2021 ◽  
pp. 1-11
Author(s):  
Montse Pauta ◽  
Berta Campos ◽  
Maria Segura-Puimedon ◽  
Gemma Arca ◽  
Alfons Nadal ◽  
...  

<b><i>Objective:</i></b> The aim of the study was to assess the diagnostic yield of 2 different next-generation sequencing (NGS) approaches: gene panel and “solo” clinical exome sequencing (solo-CES), in fetuses with structural anomalies and normal chromosomal microarray analysis (CMA), in the absence of a known familial mutation. <b><i>Methodology:</i></b> Gene panels encompassing from 2 to 140 genes, were applied mainly in persistent nuchal fold/fetal hydrops and in large hyperechogenic kidneys. Solo-CES, which entails sequencing the fetus alone and only interpreting the Online Mendelian Inheritance in Man genes, was performed in multisystem or recurrent structural anomalies. <b><i>Results:</i></b> During the study period (2015–2020), 153 NGS studies were performed in 148 structurally abnormal fetuses with a normal CMA. The overall diagnostic yield accounted for 35% (53/153) of samples and 36% (53/148) of the fetuses. Diagnostic yield with the gene panels was 31% (15/49), similar to 37% (38/104) in solo-CES. <b><i>Conclusions:</i></b> A monogenic disease was established as the underlying cause in 35% of selected fetal structural anomalies by gene panels and solo-CES.


2021 ◽  
Vol 11 ◽  
Author(s):  
Emilie Darrigues ◽  
Benjamin W. Elberson ◽  
Annick De Loose ◽  
Madison P. Lee ◽  
Ebonye Green ◽  
...  

Neuro-oncology biobanks are critical for the implementation of a precision medicine program. In this perspective, we review our first year experience of a brain tumor biobank with integrated next generation sequencing. From our experience, we describe the critical role of the neurosurgeon in diagnosis, research, and precision medicine efforts. In the first year of implementation of the biobank, 117 patients (Female: 62; Male: 55) had 125 brain tumor surgeries. 75% of patients had tumors biobanked, and 16% were of minority race/ethnicity. Tumors biobanked were as follows: diffuse gliomas (45%), brain metastases (29%), meningioma (21%), and other (5%). Among biobanked patients, 100% also had next generation sequencing. Eleven patients qualified for targeted therapy based on identification of actionable gene mutations. One patient with a hereditary cancer predisposition syndrome was also identified. An iterative quality improvement process was implemented to streamline the workflow between the operating room, pathology, and the research laboratory. Dedicated tumor bank personnel in the department of neurosurgery greatly improved standard operating procedure. Intraoperative selection and processing of tumor tissue by the neurosurgeon was integral to increasing success with cell culture assays. Currently, our institutional protocol integrates standard histopathological diagnosis, next generation sequencing, and functional assays on surgical specimens to develop precision medicine protocols for our patients. This perspective reviews the critical role of neurosurgeons in brain tumor biobank implementation and success as well as future directions for enhancing precision medicine efforts.


Sign in / Sign up

Export Citation Format

Share Document