scholarly journals Soluble Interleukin-6 Receptor Regulates Interleukin-6-Dependent Vascular Remodeling in Long-Distance Runners

2021 ◽  
Vol 12 ◽  
Author(s):  
Paulina Villar-Fincheira ◽  
Aaron J. Paredes ◽  
Tomás Hernández-Díaz ◽  
Ignacio Norambuena-Soto ◽  
Nicole Cancino-Arenas ◽  
...  

Little is known about the effects of training load on exercise-induced plasma increase of interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6R) and their relationship with vascular remodeling. We sought to evaluate the role of sIL 6R as a regulator of IL-6-induced vascular remodeling. Forty-four male marathon runners were recruited and allocated into two groups: low-training (LT, <100 km/week) and high-training (HT, ≥100 km/week), 22 athletes per group. Twenty-one sedentary participants were used as reference. IL-6, sIL-6R and sgp130 levels were measured in plasma samples obtained before and immediately after finishing a marathon (42.2-km). Aortic diameter was measured by echocardiography. The inhibitory effect of sIL-6R on IL-6-induced VSMC migration was assessed using cultured A7r5 VSMCs. Basal plasma IL-6 and sIL-6R levels were similar among sedentary and athlete groups. Plasma IL-6 and sIL-6R levels were elevated after the marathon, and HT athletes had higher post-race plasma sIL-6R, but not IL-6, level than LT athletes. No changes in sgp130 plasma levels were found in LT and HT groups before and after running the marathon. Athletes had a more dilated ascending aorta and aortic root than sedentary participants with no differences between HT and LT athletes. However, a positive correlation between ascending aorta diameter and plasma IL-6 levels corrected by training load and years of training was observed. IL-6 could be responsible for aorta dilation because IL-6 stimulated VSMC migration in vitro, an effect that is inhibited by sIL-6R. However, IL-6 did not modify cell proliferation, collagen type I and contractile protein of VSMC. Our results suggest that exercise induces vascular remodeling. A possible association with IL-6 is proposed. Because sIL-6R inhibits IL-6-induced VSMC migration, a possible mechanism to regulate IL-6-dependent VSMC migration is also proposed.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Haniel A Araujo ◽  
Leonardo Y Tanaka ◽  
Gustavo K Hironaka ◽  
Thais L Araujo ◽  
Celso K Takimura ◽  
...  

INTRODUCTION: Vascular remodeling orchestrates a complex network of signaling pathways responsible for pathological changes in many vascular diseases such as atherosclerosis. We investigated the role of endoplasmic reticulum chaperone Protein Disulfide Isomerase (PDI) and the extracellular PDI (ecPDI) pool in vascular caliber and architecture during vascular repair and remodeling after injury (AI). METHODS AND RESULTS: After rabbit iliac artery balloon injury, PDI is markedly increased at mRNA and protein levels (25-fold vs. basal 14 days AI), with increase in both intracellular and ecPDI. Silencing PDI by siRNA in vitro induced ER stress markers upregulation and apoptosis (assessed by TUNEL assay). PDI knockdown also upregulated proliferation marker PCNA and decreased differentiation marker calponin-C. Furthermore, ecPDI inhibition prevents injury-increased hydrogen peroxide generation and decreases arterial nitrate (NO3-) level. EcPDI neutralization in vivo with PDIAb-containing perivascular gel from days 12-14AI promoted 25% decrease in vascular caliber at arteriography and similar decreases in total vessel circumference at optical coherence tomography, without changing neointima, indicating increased constrictive remodeling. EcPDI neutralization promoted striking changes in collagen, with switch from circumferential to radial fiber orientation towards a more rigid fiber type. Collagen type I and III were decreased after ecPDI inhibition in arteries 14 days AI. Cytoskeleton architecture was also disrupted, with loss of stress fiber coherent organization and switch from thin to medium-thickness actin fibers. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling. There was decreased PDI expression in media and intima from plaques exhibiting constrictive remodeling and, conversely, enhanced PDI expression in media of plaques depicting outward remodeling. CONCLUSIONS: Thus, PDI is highly upregulated after injury and reshapes matrix and cytoskeleton architecture to support an anticonstrictive remodeling effect. Such findings suggest an important role for PDI in lumen maintenance during vascular remodeling.


2021 ◽  
Vol 22 (4) ◽  
pp. 1810
Author(s):  
Ineke D.C. Jansen ◽  
Socrates E. Papapoulos ◽  
Nathalie Bravenboer ◽  
Teun J. de Vries ◽  
Natasha M. Appelman-Dijkstra

Pycnodysostosis, a rare autosomal recessive skeletal dysplasia, is caused by a deficiency of cathepsin K. Patients have impaired bone resorption in the presence of normal or increased numbers of multinucleated, but dysfunctional, osteoclasts. Cathepsin K degrades collagen type I and generates N-telopeptide (NTX) and the C-telopeptide (CTX) that can be quantified. Levels of these telopeptides are increased in lactating women and are associated with increased bone resorption. Nothing is known about the consequences of cathepsin K deficiency in lactating women. Here we present for the first time normalized blood and CTX measurements in a patient with pycnodysostosis, exclusively related to the lactation period. In vitro studies using osteoclasts derived from blood monocytes during lactation and after weaning further show consistent bone resorption before and after lactation. Increased expression of cathepsins L and S in osteoclasts derived from the lactating patient suggests that other proteinases could compensate for the lack of cathepsin K during the lactation period of pycnodysostosis patients.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 863 ◽  
Author(s):  
Ana Amaral ◽  
Carina Fernandes ◽  
Maria Rosa Rebordão ◽  
Anna Szóstek-Mioduchowska ◽  
Karolina Lukasik ◽  
...  

Neutrophil extracellular traps (NETs) fight endometritis, and elastase (ELA), a protease found in NETs, might induce collagen type I (COL1) accumulation in equine endometrium. Metallopeptidases (MMPs) are involved in extracellular matrix balance. The aim was to evaluate the effects of ELA and sivelestat (selective elastase inhibitor) on MMP-2 and MMP-9 expression and gelatinolytic activity, as well as the potential inhibitory effect of sivelestat on ELA-induced COL1 in equine endometrium. Endometrial explants from follicular (FP) and mid-luteal (MLP) phases were treated for 24 or 48 h with ELA, sivelestat, and their combination. Transcripts of COL1A2, MMP2, and MMP9 were evaluated by qPCR; COL1 protein relative abundance by Western blot, and MMP-2 and MMP-9 gelatinolytic activity by zymography. In response to ELA treatment, there was an increase in MMP2 mRNA transcription (24 h) in active MMP-2 (48 h), both in FP, and in MMP9 transcripts in FP (48 h) and MLP (24 h) (p < 0.05). Sivelestat inhibited ELA-induced COL1A2 transcripts in FP (24 h) and MLP (24 h, 48 h) (p < 0.05). The sivelestat inhibitory effect was detected in MMP9 transcripts in FP at 48 h (p < 0.05), but proteases activity was unchanged. Thus, MMP-2 and MMP-9 might be implicated in endometrium fibrotic response to ELA. In mare endometrium, sivelestat may decrease ELA-induced COL1 deposition and hinder endometrosis development.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 382
Author(s):  
Rubén Martín-Cabezuelo ◽  
José Carlos Rodríguez-Hernández ◽  
Guillermo Vilariño-Feltrer ◽  
Ana Vallés-Lluch

A novel procedure to obtain smooth, continuous polymeric surfaces from poly(glycerol sebacate) (PGS) has been developed with the spin-coating technique. This method proves useful for separating the effect of the chemistry and morphology of the networks (that can be obtained by varying the synthesis parameters) on cell-protein-substrate interactions from that of structural variables. Solutions of the PGS pre-polymer can be spin-coated, to then be cured. Curing under variable temperatures has been shown to lead to PGS networks with different chemical properties and topographies, conditioning their use as a biomaterial. Particularly, higher synthesis temperatures yield denser networks with fewer polar terminal groups available on the surface. Material-protein interactions were characterised by using extracellular matrix proteins such as fibronectin (Fn) and collagen type I (Col I), to unveil the biological interface profile of PGS substrates. To that end, atomic force microscopy (AFM) images and quantification of protein adsorbed in single, sequential and competitive protein incubations were used. Results reveal that Fn is adsorbed in the form of clusters, while Col I forms a characteristic fibrillar network. Fn has an inhibitory effect when incubated prior to Col I. Human umbilical endothelial cells (HUVECs) were also cultured on PGS surfaces to reveal the effect of synthesis temperature on cell behaviour. To this effect, early focal adhesions (FAs) were analysed using immunofluorescence techniques. In light of the results, 130 °C seems to be the optimal curing temperature since a preliminary treatment with Col I or a Fn:Col I solution facilitates the formation of early focal adhesions and growth of HUVECs.


1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


Author(s):  
Michel Haagdorens ◽  
Elle Edin ◽  
Per Fagerholm ◽  
Marc Groleau ◽  
Zvi Shtein ◽  
...  

Abstract Purpose To determine feasibility of plant-derived recombinant human collagen type I (RHCI) for use in corneal regenerative implants Methods RHCI was crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form hydrogels. Application of shear force to liquid crystalline RHCI aligned the collagen fibrils. Both aligned and random hydrogels were evaluated for mechanical and optical properties, as well as in vitro biocompatibility. Further evaluation was performed in vivo by subcutaneous implantation in rats and corneal implantation in Göttingen minipigs. Results Spontaneous crosslinking of randomly aligned RHCI (rRHCI) formed robust, transparent hydrogels that were sufficient for implantation. Aligning the RHCI (aRHCI) resulted in thicker collagen fibrils forming an opaque hydrogel with insufficient transverse mechanical strength for surgical manipulation. rRHCI showed minimal inflammation when implanted subcutaneously in rats. The corneal implants in minipigs showed that rRHCI hydrogels promoted regeneration of corneal epithelium, stroma, and nerves; some myofibroblasts were seen in the regenerated neo-corneas. Conclusion Plant-derived RHCI was used to fabricate a hydrogel that is transparent, mechanically stable, and biocompatible when grafted as corneal implants in minipigs. Plant-derived collagen is determined to be a safe alternative to allografts, animal collagens, or yeast-derived recombinant human collagen for tissue engineering applications. The main advantage is that unlike donor corneas or yeast-produced collagen, the RHCI supply is potentially unlimited due to the high yields of this production method. Lay Summary A severe shortage of human-donor corneas for transplantation has led scientists to develop synthetic alternatives. Here, recombinant human collagen type I made of tobacco plants through genetic engineering was tested for use in making corneal implants. We made strong, transparent hydrogels that were tested by implanting subcutaneously in rats and in the corneas of minipigs. We showed that the plant collagen was biocompatible and was able to stably regenerate the corneas of minipigs comparable to yeast-produced recombinant collagen that we previously tested in clinical trials. The advantage of the plant collagen is that the supply is potentially limitless.


2004 ◽  
Vol 286 (3) ◽  
pp. H889-H894 ◽  
Author(s):  
Regis R. Lamberts ◽  
Maurice J. J. M. F. Willemsen ◽  
Néstor G. Pérez ◽  
Pieter Sipkema ◽  
Nico Westerhof

Collagen degradation is suggested to be responsible for long-term contractile dysfunction in different cardiomyopathies, but the effects of acute and specific collagen type I removal (main type in the heart muscle) on tension have not been studied. We determined the diastolic and developed tension length relations in isometric contracting perfused rat papillary muscles (perfusion pressure 60 cmH2O) before and after acute and specific removal of small collagen struts with the use of purified collagenase type I. At 95% of the maximal length (95% Lmax), diastolic tension increased 20.4 ± 8.1% ( P < 0.05, n = 6) and developed tension increased 15.0 ± 6.7% after collagenase treatment compared with time controls. Treatment increased the diastolic muscle diameter by 7.1 ± 3.4% at 95% Lmax, whereas the change in diameter due to contraction was not changed. Diastolic coronary flow and normalized coronary arterial flow impediment did not change after collagenase treatment. Electron microscopy revealed that the number of small collagen struts, interconnecting myocytes, and capillaries was reduced to ∼32% after treatment. We conclude that removal of the small collagen struts by acute and specific collagen type I degradation increases diastolic and developed tension in perfused papillary muscle. We suggest that diastolic tension is increased due to edema, whereas developed tension is increased because the removal of the struts poses a lower lateral load on the cardiac myocytes, allowing more myocyte thickening.


2017 ◽  
Vol 312 (3) ◽  
pp. G219-G227 ◽  
Author(s):  
Leonie Beljaars ◽  
Sara Daliri ◽  
Christa Dijkhuizen ◽  
Klaas Poelstra ◽  
Reinoud Gosens

WNT-5A is a secreted growth factor that belongs to the noncanonical members of the Wingless-related MMTV-integration family. Previous studies pointed to a connection between WNT-5A and the fibrogenic factor TGF-β warranting further studies into the functional role of WNT-5A in liver fibrosis. Therefore, we studied WNT-5A expressions in mouse and human fibrotic livers and examined the relation between WNT-5A and various fibrosis-associated growth factors, cytokines, and extracellular matrix proteins. WNT-5A gene and protein expressions were significantly increased in fibrotic mouse and human livers compared with healthy livers. Regression or therapeutic intervention in mice resulted in decreased hepatic WNT-5A levels paralleled by lower collagen levels. Immunohistochemical analysis showed WNT-5A staining in fibrotic septa colocalizing with desmin staining indicating WNT-5A expression in myofibroblasts. In vitro studies confirmed WNT-5A expression in this cell type and showed that TGF-β significantly enhanced WNT-5A expression in contrast to PDGF-BB and proinflammatory cytokines IL-1β and TNF-α. Additionally, TGF-β induces the expression of the WNT receptors FZD2 and FZD8. After silencing of WNT-5A, reduced levels of collagen type I, vimentin, and fibronectin in TGF-β-stimulated myofibroblasts were measured compared with nonsilencing siRNA-treated controls. Interestingly, the antifibrotic cytokine IFNγ suppressed WNT-5A in vitro and in vivo. IFNγ-treated fibrotic mice showed significantly less WNT-5A expression compared with untreated fibrotic mice. In conclusion, WNT-5A paralleled collagen I levels in fibrotic mouse and human livers. WNT-5A expression in myofibroblasts is induced by the profibrotic factor TGF-β and plays an important role in TGF-β-induced regulation of fibrotic matrix proteins, whereas its expression can be reversed upon treatment, both in vitro and in vivo. NEW & NOTEWORTHY This study describes the localization and functional role of WNT-5A in human and mouse fibrotic livers. Hepatic WNT-5A expression parallels collagen type I expression. In vivo and in vitro, the myofibroblasts were identified as the key hepatic cells producing WNT-5A. WNT-5A is under control of TGF-β and its activities are primarily profibrotic.


Sign in / Sign up

Export Citation Format

Share Document