scholarly journals Quantitative Trait Loci Associated with Drought Tolerance in Brachypodium distachyon

2017 ◽  
Vol 8 ◽  
Author(s):  
Yiwei Jiang ◽  
Xicheng Wang ◽  
Xiaoqing Yu ◽  
Xiongwei Zhao ◽  
Na Luo ◽  
...  
10.5109/26153 ◽  
2013 ◽  
Vol 58 (1) ◽  
pp. 1-6
Author(s):  
Nguyet M. T. Nguyen ◽  
Long H. Hoang ◽  
Naruto Furuya ◽  
Kenichi Tsuchiya ◽  
Thuy T. T. Nguyen

Author(s):  
Pardeep Kumar ◽  
Mukesh Choudhary ◽  
B. S. Jat ◽  
M. C. Dagla ◽  
Vishal Singh ◽  
...  

Abstract This chapter focuses on target traits for drought stress, progress in mapping for drought tolerance-associated genes/QTLs identification and expression studies and introgression strategies followed by the possibilities of integrating the concept of speed breeding in maize drought breeding programmes for better utilization of wild relatives.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 620
Author(s):  
Noppawan Nounjan ◽  
Wuttipong Mahakham ◽  
Jonaliza L. Siangliw ◽  
Theerayut Toojinda ◽  
Piyada Theerakulpisut

Jasmine rice (Oryza sativa L.), or Khao Dawk Mali 105 (KDML105), is sensitive to drought and salt stresses. In this study, two improved drought-tolerant chromosome segment substitution lines (CSSLs) of KDML105 (CSSL8-103 and CSSL8-106), which carry drought tolerance quantitative trait loci (QTLs) on chromosome 8, were evaluated for salt tolerance and were compared with KDML105 and the QTL donor DH103, their parents and the salt-tolerant genotype Pokkali. After being subjected to salt stress for 6 days, 3-week-old seedlings of Pokkali showed the highest salt tolerance. Parameters related to photosynthesis were less inhibited in both CSSLs and the donor DH103, while these parameters were more severely damaged in the recurrent parent KDML105. Albeit a high ratio of Na+/K+, CSSLs and DH103 showed similar or higher contents of soluble sugar and activity of superoxide dismutase (SOD; EC1.15.1.1) compared with Pokkali, indicating possible mechanisms of either tissue or osmotic tolerance in these plants. The expression of a putative gene Os08g41990 (aminotransferase), which is located in DT-QTL and is involved in chlorophyll biosynthesis, significantly decreased under salt stress in KDML105 and CSSL8-103, while no obvious change in the expression of this gene was observed in Pokkali, DH103 and CSSL8-106. This gene might play a role in maintaining chlorophyll content under stress conditions. Taken together, the results of this study indicate that DT-QTL could contribute to the enhancement of photosynthetic performance in CSSL lines, leading to changes in their physiological ability to tolerate salinity stress.


2012 ◽  
Vol 12 (1) ◽  
pp. 9 ◽  
Author(s):  
Deepmala Sehgal ◽  
Vengaldas Rajaram ◽  
Ian Peter Armstead ◽  
Vincent Vadez ◽  
Yash Pal Yadav ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document