scholarly journals Gene Expression Pattern and Protein Localization of Arabidopsis Phospholipase D Alpha 1 Revealed by Advanced Light-Sheet and Super-Resolution Microscopy

2018 ◽  
Vol 9 ◽  
Author(s):  
Dominik Novák ◽  
Pavol Vadovič ◽  
Miroslav Ovečka ◽  
Olga Šamajová ◽  
George Komis ◽  
...  
Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 544 ◽  
Author(s):  
Jorge A. Ramírez-Tejero ◽  
Jaime Jiménez-Ruiz ◽  
María de la O Leyva-Pérez ◽  
Juan Bautista Barroso ◽  
Francisco Luque

The olive tree (Olea europaea L.) was one of the first plant species in history to be domesticated. Throughout olive domestication, gene expression has undergone drastic changes that may affect tissue/organ-specific genes. This is an RNA-seq study of the transcriptomic activity of different tissues/organs from adult olive tree cv. “Picual” under field conditions. This analysis unveiled 53,456 genes with expression in at least one tissue, 32,030 of which were expressed in all organs and 19,575 were found to be potential housekeeping genes. In addition, the specific expression pattern in each plant part was studied. The flower was clearly the organ with the most exclusively expressed genes, 3529, many of which were involved in reproduction. Many of these organ-specific genes are generally involved in regulatory activities and have a nuclear protein localization, except for leaves, where there are also many genes with a plastid localization. This was also observed in stems to a lesser extent. Moreover, pathogen defense and immunity pathways were highly represented in roots. These data show a complex pattern of gene expression in different organs, and provide relevant data about housekeeping and organ-specific genes in cultivated olive.


Author(s):  
Aravind P ◽  
Sarojini R. Bulbule ◽  
Hemalatha N ◽  
Anushree G ◽  
Babu R.L ◽  
...  

Abstract Background Free radicals generated in the biological system bring about modifications in biological molecules causing damage to their structure and function. Identifying the damage caused by ROS and RNS is important to predict the pathway of apoptosis due to stress in PC12 cells. The first defense mechanisms against them are antioxidants which act in various pathways through important cellular organelles like the mitochondria and endoplasmic reticulum. Specific biomarkers like Gadd153 which is a marker for endoplasmic reticulum stress, Nrf2 which responds to the redox changes and translocates the antioxidant response elements, and Btg2 which is an antioxidant regulator have not been addressed in different stress conditions previously in PC12 cells. Therefore, the study was conducted to analyze the gene expression pattern (SOD, Catalase, Btg2, Gadd153, and Nrf2) and the protein expression pattern (iNOS and MnSOD) of the antioxidant stress markers in differential stress-induced PC12 cells. Peroxynitrite (1 μM), rotenone (1 μM), H2O2(100 mM), and high glucose (33 mM) were used to induce oxidative and nitrosative stress in PC12 cells. Results The results obtained suggested that rotenone-induced PC12 cells showed a significant increase in the expression of catalase, Btg2, and Gadd153 compared to the control. Peroxynitrite-induced PC12 cells showed higher expression of Btg2 compared to the control. H2O2 and high glucose showed lesser expression compared to the control in all stress marker genes. In contrast, the Nrf2 gene expression is downregulated in all the stress-induced PC12 cells compared to the control. Further, MnSOD and iNOS protein expression studies suggest that PC12 cells exhibit a selective downregulation. Lower protein expression of MnSOD and iNOS may be resulted due to the mitochondrial dysfunction in peroxynitrite-, high glucose-, and H2O2-treated cells, whereas rotenone-induced cells showed lower expression, which could be the result of a dysfunction of the endoplasmic reticulum. Conclusion Different stress inducers like rotenone, peroxynitrite, H2O2, and high glucose increase the NO and ROS. Btg2 and Gadd153 genes were upregulated in the stress-induced cells, whereas the Nrf2 was significantly downregulated in differential stress-induced PC12 cells. Further, antioxidant marker genes were differentially expressed with different stress inducers.


2003 ◽  
Vol 73 (5) ◽  
pp. 667-678 ◽  
Author(s):  
Agata Matejuk ◽  
Corwyn Hopke ◽  
Jami Dwyer ◽  
Sandhya Subramanian ◽  
Richard E. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document