scholarly journals Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses

2018 ◽  
Vol 9 ◽  
Author(s):  
Nicol Caplin ◽  
Neil Willey
Author(s):  
J J Bevelacqua ◽  
S M J Mortazavi

In 2016, scientists reported that human exposure to low doses of ionizing radiation (CT scans of the brain) might relieve symptoms of both Alzheimer’s disease (AD) and Parkinson disease (PD). The findings were unbelievable for those who were not familiar with neurohormesis. X-ray stimulation of the patient’s adaptive protection systems against neurodegenerative diseases was the mechanism proposed by those authors. Now, some more recent studies performed in the field of neurobiological research confirm that low levels of stress can produce protective responses against the pathogenic processes. This paper outlines possible protective consequences of LDR in preventing the pathogenesis of AD through mechanisms such as restoring the myelin sheath and preventing neurodegeneration caused by oxidative stress. Focal demyelination is frequently reported in the proximity of beta-amyloid plaques within neocortex. Extracellular accumulation of amyloid is among well-characterized pathological changes in AD. It should be noted that LDR has been shown to contribute to the regeneration and functional recovery after transverse peripheral nerve injury (through inducing increased production of VEGF and GAP-43), which advances both the axonal regeneration and myelination. Another mechanism which is possibly involved is preventing neurodegeneration caused by oxidative stress. While high doses can induce reactive oxygen species (ROS) formation, oxidative stress and neuro-inflammation, substantial evidence now indicates that LDR can mitigate tissue damage through antioxidant defenses. Although adult neurogenesis has been reported to be beneficial for the regeneration of  nervous system, some studies demonstrate that neurogenesis increases in AD brains. In spite of these reports, cellular therapy is introduced as a promising strategy for AD, and hence, LDR can affect the proliferation and differentiation of neural stem cells. Although such mechanisms are not fully known yet, it is hoped that this paper would foster further investigation into the mechanisms of this phenomenon, which accordingly improves human health.


1984 ◽  
Vol 23 (02) ◽  
pp. 87-91 ◽  
Author(s):  
K. Flemming

SummaryIn the beginning of medical radiology, only the benefit of ionizing radiation was obvious, and radiation was handled and applied generously. After late effects had become known, the radiation exposure was reduced to doses following which no such effects were found. Thus, it was assumed that one could obtain an optimal medical benefit without inducing any hazard. Later, due to experimental findings, hypotheses arose (linear dose-effect response, no time factor) which led to the opinion that even low and lowest radiation doses were relevant for the induction of late effects. A radiation fear grew, which was unintentionally strengthened by radiation protection decrees: even for low doses a radiation risk could be calculated. Therefore, it was believed that there could still exist a radiation hazard, and the radiation benefit remained in question. If, however, all presently known facts are considered, one must conclude that large radiation doses are hazardous and low doses are inefficient, whereas lowest doses have a biopositive effect. Ionizing radiation, therefore, may cause both, hazard as well as benefit. Which of the two effects prevails is determined by the level of dose.


1966 ◽  
Vol 51 (2) ◽  
pp. 224-230 ◽  
Author(s):  
John A. Thomas ◽  
Edward T. Knych

ABSTRACT Norethynodrel antagonized the fructose stimulating effects of exogenous testosterone in sex accessory organs of castrate mice. It was antiandrogenic at both low doses (50 μg) and high doses (400 μg) of testosterone. Norethindrone and ethisterone suppressed fructose formation in the testosterone-treated castrate mouse, but not as effectively as norethynodrel. Norethandrolone exerted no antagonistic activity.


1983 ◽  
Vol 36 (4) ◽  
pp. 333 ◽  
Author(s):  
A RJones

Non-steroidal chemicals that affect male fertility have been known for over 25 years but only one compound, oc-chlorohydrin, possesses most of the attributes of an ideal male contraceptive. In the male rat, for example, continuous daily oral administration of low doses produces an almost immediate and continuous antifertility response that ceases when treatment is withdrawn. Such a dose regime does not interfere with libido, is apparently not toxic and the action is specific towards mature sperm. Furthermore, the action of the compound is species-specific: it is effective in the rat, ram, boar, guinea pig, hamster,rhesus monkey and upon ejaculated human sperm but it is ineffective in the mouse and the rabbit. High doses of oc-chlorohydrin can be neurotoxic, nephrotoxic and, in rats, lead to prolonged or permanent infertility. However, the antifertility response and the toxicity of racemic oc-chlorohydrin may be due, respectively, to the separate enantiomers. No other antifertility chemical has been investigated to such an extent as oc-chlorohydrin; this article reviews the progress that has been achieved with oc-chlorohydrin during the past six years.


2001 ◽  
Vol 48 (4) ◽  
pp. 1561-1564 ◽  
Author(s):  
V.D. Ryzhikov ◽  
N.G. Starzhinskiy ◽  
L.P. Gal'chinetskii ◽  
M. Guttormsen ◽  
A.A. Kist ◽  
...  

DNA Repair ◽  
2013 ◽  
Vol 12 (7) ◽  
pp. 508-517 ◽  
Author(s):  
Ingrid Nosel ◽  
Aurélie Vaurijoux ◽  
Joan-Francesc Barquinero ◽  
Gaetan Gruel

1990 ◽  
Vol 259 (3) ◽  
pp. G355-G363 ◽  
Author(s):  
M. F. Otterson ◽  
S. K. Sarna

We studied the small intestinal motor effects of oral and intravenous (iv) erythromycin in 10 conscious dogs. After control recordings with placebo, oral or iv erythromycin was given at 40% of the migrating motor complex (MMC) cycle. Recordings were made after administration until normal contractile activity had returned or 12 h postdrug administration. Low doses initiated a premature MMC. High doses, however, prolonged the MMC cycle length. Erythromycin reduced the MMC propagation velocity at all doses. Both oral and iv erythromycin induced amyogenesia. During this pattern, electrical control activity was obliterated in the proximal and destabilized in the distal small intestine. Erythromycin also increased the incidence of retrograde giant contractions (RGCs) and vomiting. These effects occurred within the first 2 h after oral and within the first 30 min after iv administration. The incidence of giant migrating contractions (GMCs) increased significantly from 5 to 12 h but not from 0 to 5 h after administration. The distance of origination of GMCs from the ileocolonic junction was significantly increased from 5 to 12 h. The amplitude ratio, duration, and velocity of migration of GMCs induced after erythromycin were similar to control values. Clusters of coordinated antral and duodenal contractions also occurred early after administration. Our findings suggest that erythromycin has multiple motor effects on the stomach and small intestine. Diarrhea, abdominal cramping, and vomiting associated with erythromycin may be related to increased incidence of GMCs and RGCs. Erythromycin has a biphasic effect on MMC cycle length, initiating premature MMCs at low doses and prolonging their cycle length at higher doses.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document