scholarly journals Editorial: Protein Quality Controlling Systems in Plant Responses to Environmental Stresses

2018 ◽  
Vol 9 ◽  
Author(s):  
Minghui Lu ◽  
Hanjo A. Hellmann ◽  
Yule Liu ◽  
Wei Wang
Author(s):  
José A. Hernández ◽  
Pedro Diaz-Vivancos ◽  
Gregorio Barba-Espín ◽  
María José Clemente-Moreno

2021 ◽  
Vol 12 ◽  
Author(s):  
Cristhian Camilo Chávez-Arias ◽  
Gustavo Adolfo Ligarreto-Moreno ◽  
Augusto Ramírez-Godoy ◽  
Hermann Restrepo-Díaz

Maize (Zea mays L.) is one of the main cereals grown around the world. It is used for human and animal nutrition and also as biofuel. However, as a direct consequence of global climate change, increased abiotic and biotic stress events have been reported in different regions of the world, which have become a threat to world maize yields. Drought and heat are environmental stresses that influence the growth, development, and yield processes of maize crops. Plants have developed dynamic responses at the physiological, biochemical, and molecular levels that allow them to escape, avoid and/or tolerate unfavorable environmental conditions. Arthropod herbivory can generate resistance or tolerance responses in plants that are associated with inducible and constitutive defenses. Increases in the frequency and severity of abiotic stress events (drought and heat), as a consequence of climate change, can generate critical variations in plant-insect interactions. However, the behavior of herbivorous arthropods under drought scenarios is not well understood, and this kind of stress may have some positive and negative effects on arthropod populations. The simultaneous appearance of different environmental stresses and biotic factors results in very complex plant responses. In this review, recent information is provided on the physiological, biochemical, and molecular responses of plants to the combination of drought, heat stress, and the effect on some arthropod pests of interest in the maize crop.


2018 ◽  
Author(s):  
Khaled Moustafa ◽  
Joanna M. Cross

The assessment of gene expression levels is an important step toward elucidating gene functions temporally and spatially. Decades ago, typical studies were focusing on a few genes individually, whereas now researchers are able to examine whole genomes at once. The upgrade of throughput levels aided the introduction of systems biology approaches whereby cell functional networks can be scrutinized in their entireties to unravel potential functional interacting components. The birth of systems biology goes hand-in-hand with huge technological advancements and enables a fairly rapid detection of all transcripts in studied biological samples. Even so, earlier technologies that were restricted to probing single genes or a subset of genes still have their place in research laboratories. The objective here is to highlight key approaches used in gene expression analysis in plant responses to environmental stresses, or, more generally, any other condition of interest. Northern blots, RNase protection assays, and qPCR are described for their targeted detection of one or a few transcripts at a once. Differential display and serial analysis of gene expression represent non-targeted methods to evaluate expression changes of a significant number of gene transcripts. Finally, microarrays and RNA-seq (next-generation sequencing) contribute to the ultimate goal of identifying and quantifying all transcripts in a cell under conditions or stages of study. Recent examples of applications as well as principles, advantages, and drawbacks of each method are contrasted. We also suggest replacing the term "Next-Generation Sequencing (NGS)" with another less confusing synonym such as "RNA-seq", "high throughput sequencing", or "massively parallel sequencing" to avoid confusion with any future sequencing technologies.


2018 ◽  
Author(s):  
Khaled Moustafa

The assessment of gene expression levels is an important step toward elucidating gene functions temporally and spatially. Decades ago, typical studies were focusing on a few genes individually, whereas now researchers are able to examine whole genomes at once. The upgrade of throughput levels aided the introduction of systems biology approaches whereby cell functional networks can be scrutinized in their entireties to unravel potential functional interacting components. The birth of systems biology goes hand-in-hand with huge technological advancements and enables a fairly rapid detection of all transcripts in studied biological samples. Even so, earlier technologies that were restricted to probing single genes or a subset of genes still have their place in research laboratories. The objective here is to highlight key approaches used in gene expression analysis in plant responses to environmental stresses, or, more generally, any other condition of interest. Northern blots, RNase protection assays, and qPCR are described for their targeted detection of one or a few transcripts at a once. Differential display and serial analysis of gene expression represent non-targeted methods to evaluate expression changes of a significant number of gene transcripts. Finally, microarrays and RNA-seq (next-generation sequencing) contribute to the ultimate goal of identifying and quantifying all transcripts in a cell under conditions or stages of study. Recent examples of applications as well as principles, advantages, and drawbacks of each method are contrasted. We also suggest replacing the term "Next-Generation Sequencing (NGS)" with another less confusing synonym such as "RNA-seq", "high throughput sequencing", or "massively parallel sequencing" to avoid confusion with any future sequencing technologies.


2021 ◽  
Vol 22 (24) ◽  
pp. 13464
Author(s):  
Yun Song ◽  
Li Feng ◽  
Mohammed Abdul Muhsen Alyafei ◽  
Abdul Jaleel ◽  
Maozhi Ren

The chloroplast has a central position in oxygenic photosynthesis and primary metabolism. In addition to these functions, the chloroplast has recently emerged as a pivotal regulator of plant responses to abiotic and biotic stress conditions. Chloroplasts have their own independent genomes and gene-expression machinery and synthesize phytohormones and a diverse range of secondary metabolites, a significant portion of which contribute the plant response to adverse conditions. Furthermore, chloroplasts communicate with the nucleus through retrograde signaling, for instance, reactive oxygen signaling. All of the above facilitate the chloroplast’s exquisite flexibility in responding to environmental stresses. In this review, we summarize recent findings on the involvement of chloroplasts in plant regulatory responses to various abiotic and biotic stresses including heat, chilling, salinity, drought, high light environmental stress conditions, and pathogen invasions. This review will enrich the better understanding of interactions between chloroplast and environmental stresses, and will lay the foundation for genetically enhancing plant-stress acclimatization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kinia Ameztoy ◽  
Ángela María Sánchez-López ◽  
Francisco José Muñoz ◽  
Abdellatif Bahaji ◽  
Goizeder Almagro ◽  
...  

Microorganisms produce volatile compounds (VCs) with molecular masses of less than 300 Da that promote plant growth and photosynthesis. Recently, we have shown that small VCs of less than 45 Da other than CO2 are major determinants of plant responses to fungal volatile emissions. However, the regulatory mechanisms involved in the plants’ responses to small microbial VCs remain unclear. In Arabidopsis thaliana plants exposed to small fungal VCs, growth promotion is accompanied by reduction of the thiol redox of Calvin-Benson cycle (CBC) enzymes and changes in the levels of shikimate and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway-related compounds. We hypothesized that plants’ responses to small microbial VCs involve post-translational modulation of enzymes of the MEP and shikimate pathways via mechanisms involving redox-activated photosynthesis signaling. To test this hypothesis, we compared the responses of wild-type (WT) plants and a cfbp1 mutant defective in a redox-regulated isoform of the CBC enzyme fructose-1,6-bisphosphatase to small VCs emitted by the fungal phytopathogen Alternaria alternata. Fungal VC-promoted growth and photosynthesis, as well as metabolic and proteomic changes, were substantially weaker in cfbp1 plants than in WT plants. In WT plants, but not in cfbp1 plants, small fungal VCs reduced the levels of both transcripts and proteins of the stromal Clp protease system and enhanced those of plastidial chaperonins and co-chaperonins. Consistently, small fungal VCs promoted the accumulation of putative Clp protease clients including MEP and shikimate pathway enzymes. clpr1-2 and clpc1 mutants with disrupted plastidial protein homeostasis responded weakly to small fungal VCs, strongly indicating that plant responses to microbial volatile emissions require a finely regulated plastidial protein quality control system. Our findings provide strong evidence that plant responses to fungal VCs involve chloroplast-to-nucleus retrograde signaling of redox-activated photosynthesis leading to proteostatic regulation of the MEP and shikimate pathways.


Sign in / Sign up

Export Citation Format

Share Document