scholarly journals Statistical and Machine Learning Approaches to Predict Gene Regulatory Networks From Transcriptome Datasets

2018 ◽  
Vol 9 ◽  
Author(s):  
Keiichi Mochida ◽  
Satoru Koda ◽  
Komaki Inoue ◽  
Ryuei Nishii
2021 ◽  
Vol 12 ◽  
Author(s):  
Jiyoung Lee ◽  
Shuo Geng ◽  
Song Li ◽  
Liwu Li

Subclinical doses of LPS (SD-LPS) are known to cause low-grade inflammatory activation of monocytes, which could lead to inflammatory diseases including atherosclerosis and metabolic syndrome. Sodium 4-phenylbutyrate is a potential therapeutic compound which can reduce the inflammation caused by SD-LPS. To understand the gene regulatory networks of these processes, we have generated scRNA-seq data from mouse monocytes treated with these compounds and identified 11 novel cell clusters. We have developed a machine learning method to integrate scRNA-seq, ATAC-seq, and binding motifs to characterize gene regulatory networks underlying these cell clusters. Using guided regularized random forest and feature selection, our method achieved high performance and outperformed a traditional enrichment-based method in selecting candidate regulatory genes. Our method is particularly efficient in selecting a few candidate genes to explain observed expression pattern. In particular, among 531 candidate TFs, our method achieves an auROC of 0.961 with only 10 motifs. Finally, we found two novel subpopulations of monocyte cells in response to SD-LPS and we confirmed our analysis using independent flow cytometry experiments. Our results suggest that our new machine learning method can select candidate regulatory genes as potential targets for developing new therapeutics against low grade inflammation.


Patterns ◽  
2020 ◽  
Vol 1 (9) ◽  
pp. 100139
Author(s):  
Daniel Osorio ◽  
Yan Zhong ◽  
Guanxun Li ◽  
Jianhua Z. Huang ◽  
James J. Cai

2018 ◽  
Author(s):  
P. Tsakanikas ◽  
D. Manatakis ◽  
E. S. Manolakos

ABSTRACTDeciphering the dynamic gene regulatory mechanisms driving cells to make fate decisions remains elusive. We present a novel unsupervised machine learning methodology that can be used to analyze a dataset of heterogeneous single-cell gene expressions profiles, determine the most probable number of states (major cellular phenotypes) represented and extract the corresponding cell sub-populations. Most importantly, for any transition of interest from a source to a destination state, our methodology can zoom in, identify the cells most specific for studying the dynamics of this transition, order them along a trajectory of biological progression in posterior probabilities space, determine the "key-player" genes governing the transition dynamics, partition the trajectory into consecutive phases (transition "micro-states"), and finally reconstruct causal gene regulatory networks for each phase. Application of the end-to-end methodology provides new insights on key-player genes and their dynamic interactions during the important HSC-to-LMPP cell state transition involved in hematopoiesis. Moreover, it allows us to reconstruct a probabilistic representation of the “epigenetic landscape” of transitions and identify correctly the major ones in the hematopoiesis hierarchy of states.


2020 ◽  
Author(s):  
Daniel Osorio ◽  
Yan Zhong ◽  
Guanxun Li ◽  
Jianhua Z. Huang ◽  
James J. Cai

AbstractConstructing and comparing gene regulatory networks (GRNs) from single-cell RNA sequencing (scRNAseq) data has the potential to reveal critical components in the underlying regulatory networks regulating different cellular transcriptional activities. Here, we present a robust and powerful machine learning workflow—scTenifoldNet—for comparative GRN analysis of single cells. The scTenifoldNet workflow, consisting of principal component regression, low-rank tensor approximation, and manifold alignment, constructs and compares transcriptome-wide single-cell GRNs (scGRNs) from different samples to identify gene expression signatures shifting with cellular activity changes such as those associated with pathophysiological processes and responses to environmental perturbations. We used simulated data to benchmark scTenifoldNet’s performance, and then applied scTenifoldNet to several real data sets. In real-data applications, scTenifoldNet identified highly specific changes in gene regulation in response to acute morphine treatment, an antibody anticancer drug, gene knockout, double-stranded RNA stimulus, and amyloid-beta plaques in various types of mouse and human cells. We anticipate that scTenifoldNet can help achieve breakthroughs through constructing and comparing scGRNs in poorly characterized biological systems, by deciphering the full cellular and molecular complexity of the data.HighlightsscTenifoldNet is a machine learning workflow built upon principal component regression, low-rank tensor approximation, and manifold alignmentscTenifoldNet uses single-cell RNA sequencing (scRNAseq) data to construct single-cell gene regulatory networks (scGRNs)scTenifoldNet compares scGRNs of different samples to identify differentially regulated genesReal-data applications demonstrate that scTenifoldNet accurately detects specific signatures of gene expression relevant to the cellular systems tested.Short abstractWe present scTenifoldNet—a machine learning workflow built upon principal component regression, low-rank tensor approximation, and manifold alignment—for constructing and comparing single-cell gene regulatory networks (scGRNs) using data from single-cell RNA sequencing (scRNAseq). scTenifoldNet reveals regulatory changes in gene expression between samples by comparing the constructed scGRNs. With real data, scTenifoldNet identifies specific gene expression programs associated with different biological processes, providing critical insights into the underlying mechanism of regulatory networks governing cellular transcriptional activities.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Paolo Mignone ◽  
Gianvito Pio ◽  
Sašo Džeroski ◽  
Michelangelo Ceci

AbstractThe reconstruction of Gene Regulatory Networks (GRNs) from gene expression data, supported by machine learning approaches, has received increasing attention in recent years. The task at hand is to identify regulatory links between genes in a network. However, existing methods often suffer when the number of labeled examples is low or when no negative examples are available. In this paper we propose a multi-task method that is able to simultaneously reconstruct the human and the mouse GRNs using the similarities between the two. This is done by exploiting, in a transfer learning approach, possible dependencies that may exist among them. Simultaneously, we solve the issues arising from the limited availability of examples of links by relying on a novel clustering-based approach, able to estimate the degree of certainty of unlabeled examples of links, so that they can be exploited during the training together with the labeled examples. Our experiments show that the proposed method can reconstruct both the human and the mouse GRNs more effectively compared to reconstructing each network separately. Moreover, it significantly outperforms three state-of-the-art transfer learning approaches that, analogously to our method, can exploit the knowledge coming from both organisms. Finally, a specific robustness analysis reveals that, even when the number of labeled examples is very low with respect to the number of unlabeled examples, the proposed method is almost always able to outperform its single-task counterpart.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Konstantinos Pliakos ◽  
Celine Vens

Abstract Background Network inference is crucial for biomedicine and systems biology. Biological entities and their associations are often modeled as interaction networks. Examples include drug protein interaction or gene regulatory networks. Studying and elucidating such networks can lead to the comprehension of complex biological processes. However, usually we have only partial knowledge of those networks and the experimental identification of all the existing associations between biological entities is very time consuming and particularly expensive. Many computational approaches have been proposed over the years for network inference, nonetheless, efficiency and accuracy are still persisting open problems. Here, we propose bi-clustering tree ensembles as a new machine learning method for network inference, extending the traditional tree-ensemble models to the global network setting. The proposed approach addresses the network inference problem as a multi-label classification task. More specifically, the nodes of a network (e.g., drugs or proteins in a drug-protein interaction network) are modelled as samples described by features (e.g., chemical structure similarities or protein sequence similarities). The labels in our setting represent the presence or absence of links connecting the nodes of the interaction network (e.g., drug-protein interactions in a drug-protein interaction network). Results We extended traditional tree-ensemble methods, such as extremely randomized trees (ERT) and random forests (RF) to ensembles of bi-clustering trees, integrating background information from both node sets of a heterogeneous network into the same learning framework. We performed an empirical evaluation, comparing the proposed approach to currently used tree-ensemble based approaches as well as other approaches from the literature. We demonstrated the effectiveness of our approach in different interaction prediction (network inference) settings. For evaluation purposes, we used several benchmark datasets that represent drug-protein and gene regulatory networks. We also applied our proposed method to two versions of a chemical-protein association network extracted from the STITCH database, demonstrating the potential of our model in predicting non-reported interactions. Conclusions Bi-clustering trees outperform existing tree-based strategies as well as machine learning methods based on other algorithms. Since our approach is based on tree-ensembles it inherits the advantages of tree-ensemble learning, such as handling of missing values, scalability and interpretability.


Sign in / Sign up

Export Citation Format

Share Document