scholarly journals Endoplasmic Reticulum-Mediated Protein Quality Control and Endoplasmic Reticulum-Associated Degradation Pathway Explain the Reduction of N-glycoprotein Level Under the Lead Stress

2021 ◽  
Vol 11 ◽  
Author(s):  
Hong Du ◽  
Canqi Zheng ◽  
Muhmmad Aslam ◽  
Xihui Xie ◽  
Wanna Wang ◽  
...  

Different anthropogenic activities result in the continuous increase of metal lead (Pb) in the environment and adversely affect living organisms. Therefore, it is important to investigate the tolerance mechanism in a model organism. Chlamydomonas reinhardtii is an important green eukaryotic model microalga for studying different kinds of biological questions. In this study, the responses of C. reinhardtii were revealed via a comprehensive approach, including physiological, genomic, transcriptomic, glycomic, and bioinformatic techniques. Physiological results showed that the growth rate and soluble protein content were significantly reduced under the high lead stress. Also, the results obtained from the genomic and transcriptomic analyses presented that the endoplasmic reticulum-mediated protein quality control (ERQC) system and endoplasmic reticulum-associated degradation (ERAD) pathway were activated under the third day of high lead stress. The unique upregulated protein disulfide isomerase genes on the ERQC system were proposed to be important for the protein level and protein quality control. The accumulation of specific N-glycans indicated that specific N-glycosylation of proteins might alter the biological functions of proteins to alleviate the Pb stress in alga and/or lead to the degradation of incomplete/misfolded proteins. At the same time, it was observed that genes involved in each process of ERAD were upregulated, suggesting that the ERAD pathway was activated to assist the degradation of incomplete/misfolded proteins. Therefore, it is reasonable to speculate that the reduction of protein level under the high lead stress was related to the activated ERQC system and QRAD pathway. Our findings will provide a solid and reliable foundation and a proposed ERAD working model for further in-depth study of the ERQC system and ERAD pathway under the Pb stress and even other biotic and abiotic stresses.

2018 ◽  
Vol 87 (1) ◽  
pp. 751-782 ◽  
Author(s):  
Nicole Berner ◽  
Karl-Richard Reutter ◽  
Dieter H. Wolf

Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin–proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.


2014 ◽  
Vol 459 (1) ◽  
pp. 205-216 ◽  
Author(s):  
Matthew Locke ◽  
Julia I. Toth ◽  
Matthew D. Petroski

This study provides evidence that p97 interacts with proteins modified with Lys11- and Lys48-linked ubiquitin chains at the endoplasmic reticulum membrane, suggesting roles for these signals in protein quality control.


2021 ◽  
Vol 22 (4) ◽  
pp. 2078
Author(s):  
Ji An Kang ◽  
Young Joo Jeon

The endoplasmic reticulum (ER) is an interconnected organelle that plays fundamental roles in the biosynthesis, folding, stabilization, maturation, and trafficking of secretory and transmembrane proteins. It is the largest organelle and critically modulates nearly all aspects of life. Therefore, in the endoplasmic reticulum, an enormous investment of resources, including chaperones and protein folding facilitators, is dedicated to adequate protein maturation and delivery to final destinations. Unfortunately, the folding and assembly of proteins can be quite error-prone, which leads to the generation of misfolded proteins. Notably, protein homeostasis, referred to as proteostasis, is constantly exposed to danger by flows of misfolded proteins and subsequent protein aggregates. To maintain proteostasis, the ER triages and eliminates terminally misfolded proteins by delivering substrates to the ubiquitin–proteasome system (UPS) or to the lysosome, which is termed ER-associated degradation (ERAD) or ER-phagy, respectively. ERAD not only eliminates misfolded or unassembled proteins via protein quality control but also fine-tunes correctly folded proteins via protein quantity control. Intriguingly, the diversity and distinctive nature of E3 ubiquitin ligases determine efficiency, complexity, and specificity of ubiquitination during ERAD. ER-phagy utilizes the core autophagy machinery and eliminates ERAD-resistant misfolded proteins. Here, we conceptually outline not only ubiquitination machinery but also catalytic mechanisms of E3 ubiquitin ligases. Further, we discuss the mechanistic insights into E3 ubiquitin ligases involved in the two guardian pathways in the ER, ERAD and ER-phagy. Finally, we provide the molecular mechanisms by which ERAD and ER-phagy conduct not only protein quality control but also protein quantity control to ensure proteostasis and subsequent organismal homeostasis.


2019 ◽  
Author(s):  
Lu Liu ◽  
Ayaka Inoki ◽  
Kelly Fan ◽  
Fengbiao Mao ◽  
Guojun Shi ◽  
...  

SummaryMany tissue-specific stem cells require quiescence to sustain stem cell pool and maintain lifelong tissue integrity. It remains unclear whether protein quality control is required for stem cells in quiescence when RNA content, protein synthesis and metabolic activities are significantly reduced. Here, we report that endoplasmic reticulum associated degradation (ERAD) is required to preserve the function of quiescent hematopoietic stem cells (HSC). The Sel1L/Hrd1 ERAD genes are enriched in the quiescent and inactive HSCs, and conditional knockout of Sel1L in hematopoietic tissues drives HSCs to hyper-proliferation which leads to reduced self-renewal and HSC depletion. ERAD deficiency induces a non-apoptotic ER stress and activates unfolded protein response (UPR). Furthermore, Sel1L knockout leads to mTOR activation, and mTOR inhibition rescues the HSC defects in Sel1L knockout mice. Protein quality control is, therefore, tightly regulated and actively engaged in quiescent HSCs. Sel1L/Hrd1 ERAD maintains HSC quiescence and self-renewal via restricting mTOR activity.


2020 ◽  
Author(s):  
Veena Mathew ◽  
Arun Kumar ◽  
Yangyang Kate Jiang ◽  
Kyra West ◽  
Annie S Tam ◽  
...  

Cdc48/VCP is a highly conserved ATPase chaperone that plays an essential role in the assembly or disassembly of protein-DNA complexes and in degradation of misfolded proteins. We find that Cdc48 accumulates during cellular stress at intranuclear protein quality control (INQ) sites. Cdc48 function is required to suppress INQ formation under non-stress conditions and to promote recovery following genotoxic stress. Cdc48 physically associates with the INQ substrate and splicing factor Hsh155 and regulates its assembly with partner proteins. Accordingly, cdc48 mutants have defects in splicing and show spontaneous distribution of Hsh155 to INQ aggregates where it is stabilized. Overall, this study shows that Cdc48 regulates deposition of proteins at INQ and suggests a previously unknown role for Cdc48 in the regulation or stability of splicing subcomplexes.


Sign in / Sign up

Export Citation Format

Share Document