scholarly journals Plant Associated Rhizobacteria for Biocontrol and Plant Growth Enhancement

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiurong Jiao ◽  
Yoko Takishita ◽  
Guisheng Zhou ◽  
Donald L. Smith

Crop disease remains a major problem to global food production. Excess use of pesticides through chemical disease control measures is a serious problem for sustainable agriculture as we struggle for higher crop productivity. The use of plant growth promoting rhizobacteria (PGPR) is a proven environment friendly way of controlling plant disease and increasing crop yield. PGPR suppress diseases by directly synthesizing pathogen-antagonizing compounds, as well as by triggering plant immune responses. It is possible to identify and develop PGPR that both suppress plant disease and more directly stimulate plant growth, bringing dual benefit. A number of PGPR have been registered for commercial use under greenhouse and field conditions and a large number of strains have been identified and proved as effective biocontrol agents (BCAs) under environmentally controlled conditions. However, there are still a number of challenges before registration, large-scale application, and adoption of PGPR for the pest and disease management. Successful BCAs provide strong theoretical and practical support for application of PGPR in greenhouse production, which ensures the feasibility and efficacy of PGPR for commercial horticulture production. This could be pave the way for widespread use of BCAs in agriculture, including under field conditions, to assist with both disease management and climate change conditions.

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 682
Author(s):  
Bruno Henrique Silva Dias ◽  
Sung-Hee Jung ◽  
Juliana Velasco de Castro Oliveira ◽  
Choong-Min Ryu

Plant growth-promoting rhizobacteria (PGPR) associated with plant roots can trigger plant growth promotion and induced systemic resistance. Several bacterial determinants including cell-wall components and secreted compounds have been identified to date. Here, we review a group of low-molecular-weight volatile compounds released by PGPR, which improve plant health, mostly by protecting plants against pathogen attack under greenhouse and field conditions. We particularly focus on C4 bacterial volatile compounds (BVCs), such as 2,3-butanediol and acetoin, which have been shown to activate the plant immune response and to promote plant growth at the molecular level as well as in large-scale field applications. We also disc/ uss the potential applications, metabolic engineering, and large-scale fermentation of C4 BVCs. The C4 bacterial volatiles act as airborne signals and therefore represent a new type of biocontrol agent. Further advances in the encapsulation procedure, together with the development of standards and guidelines, will promote the application of C4 volatiles in the field.


2019 ◽  
Vol 20 (7) ◽  
pp. 1769 ◽  
Author(s):  
Manoj Kaushal

Drought conditions marked by water deficit impede plant growth thus causing recurrent decline in agricultural productivity. Presently, research efforts are focussed towards harnessing the potential of microbes to enhance crop production during drought. Microbial communities, such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) buddy up with plants to boost crop productivity during drought via microbial induced systemic tolerance (MIST). The present review summarizes MIST mechanisms during drought comprised of modulation in phytohormonal profiles, sturdy antioxidant defence, osmotic grapnel, bacterial exopolysaccharides (EPS) or AMF glomalin production, volatile organic compounds (VOCs), expression of fungal aquaporins and stress responsive genes, which alters various physiological processes such as hydraulic conductance, transpiration rate, stomatal conductivity and photosynthesis in host plants. Molecular studies have revealed microbial induced differential expression of various genes such as ERD15 (Early Response to Dehydration 15), RAB18 (ABA-responsive gene) in Arabidopsis, COX1 (regulates energy and carbohydrate metabolism), PKDP (protein kinase), AP2-EREBP (stress responsive pathway), Hsp20, bZIP1 and COC1 (chaperones in ABA signalling) in Pseudomonas fluorescens treated rice, LbKT1, LbSKOR (encoding potassium channels) in Lycium, PtYUC3 and PtYUC8 (IAA biosynthesis) in AMF inoculated Poncirus, ADC, AIH, CPA, SPDS, SPMS and SAMDC (polyamine biosynthesis) in PGPR inoculated Arabidopsis, 14-3-3 genes (TFT1-TFT12 genes in ABA signalling pathways) in AMF treated Solanum, ACO, ACS (ethylene biosynthesis), jasmonate MYC2 gene in chick pea, PR1 (SA regulated gene), pdf1.2 (JA marker genes) and VSP1 (ethylene-response gene) in Pseudomonas treated Arabidopsis plants. Moreover, the key role of miRNAs in MIST has also been recorded in Pseudomonas putida RA treated chick pea plants.


Sign in / Sign up

Export Citation Format

Share Document