scholarly journals Regulation of Lateral Root Development by Shoot-Sensed Far-Red Light via HY5 Is Nitrate-Dependent and Involves the NRT2.1 Nitrate Transporter

2021 ◽  
Vol 12 ◽  
Author(s):  
Kasper van Gelderen ◽  
Chiakai Kang ◽  
Peijin Li ◽  
Ronald Pierik

Plants are very effective in responding to environmental changes during competition for light and nutrients. Low Red:Far-Red (low R:FR)-mediated neighbor detection allows plants to compete successfully with other plants for available light. This above-ground signal can also reduce lateral root growth by inhibiting lateral root emergence, a process that might help the plant invest resources in shoot growth. Nitrate is an essential nutrient for plant growth and Arabidopsis thaliana responds to low nitrate conditions by enhancing nutrient uptake and reducing lateral and main root growth. There are indications that low R:FR signaling and low nitrate signaling can affect each other. It is unknown which response is prioritized when low R:FR light- and low nitrate signaling co-occur. We investigated the effect of low nitrate conditions on the low R:FR response of the A. thaliana root system in agar plate media, combined with the application of supplemental Far-Red (FR) light to the shoot. We observed that under low nitrate conditions main and lateral root growth was reduced, but more importantly, that the response of the root system to low R:FR was not present. Consistently, a loss-of-function mutant of a nitrate transporter gene NRT2.1 lacked low R:FR-induced lateral root reduction and its root growth was hypersensitive to low nitrate. ELONGATED HYPOCOTYL5 (HY5) plays an important role in the root response to low R:FR and we found that it was less sensitive to low nitrate conditions with regards to lateral root growth. In addition, we found that low R:FR increases NRT2.1 expression and that low nitrate enhances HY5 expression. HY5 also affects NRT2.1 expression, however, it depended on the presence of ammonium in which direction this effect was. Replacing part of the nitrogen source with ammonium also removed the effect of low R:FR on the root system, showing that changes in nitrogen sources can be crucial for root plasticity. Together our results show that nitrate signaling can repress low R:FR responses and that this involves signaling via HY5 and NRT2.1.

2021 ◽  
Author(s):  
Kasper van Gelderen ◽  
Chiakai Kang ◽  
Peijin Li ◽  
Ronald Pierik

AbstractPlants are very effective in responding to environmental changes during competition for light and nutrients. Low Red:Far-Red (low R:FR)-mediated neighbor detection allows plants to compete successfully with other plants for available light. This above-ground signal can also reduce lateral root growth by inhibiting lateral root emergence, a process that might help the plant invest resources in shoot growth. Nitrate is an essential nutrient for plant growth and Arabidopsis thaliana responds to low nitrate conditions by enhancing nutrient uptake and reducing lateral and main root growth. There are indications that low R:FR signaling and low nitrate signaling can affect each other. It is unknown which response is prioritized when low R:FR light- and low nitrate signaling co-occur. We investigated the effect of low nitrate conditions on the low R:FR response of the A. thaliana root system in agar plate media, combined with the application of supplemental Far-Red (FR) light to the shoot. We observed that under low nitrate conditions main and lateral root growth was reduced, but more importantly, that the response of the root system to low R:FR was suppressed. Consistently, a loss-of-function mutant of a nitrate transporter gene NRT2.1 lacked low R:FR-induced lateral root reduction and its root growth was hypersensitive to low nitrate. ELONGATED HYPOCOTYL5 (HY5) plays an important role in the root response to low R:FR and we found that it was less sensitive to low nitrate conditions with regards to lateral root growth. In addition, we found that low R:FR increases NRT2.1 expression and that low nitrate enhances HY5 expression. HY5 also affects NRT2.1 expression, however, it depended on the presence of ammonium in which direction this effect was. Replacing part of the nitrogen source with ammonium also removed the effect of low R:FR on the root system, showing that changes in nitrogen sources can be crucial for root plasticity. Together our results show that nitrate signaling can repress low R:FR responses and that this involves signaling via HY5 and NRT2.1.


2009 ◽  
Vol 36 (11) ◽  
pp. 938 ◽  
Author(s):  
Nima Yazdanbakhsh ◽  
Joachim Fisahn

Plant organ phenotyping by non-invasive video imaging techniques provides a powerful tool to assess physiological traits and biomass production. We describe here a range of applications of a recently developed plant root monitoring platform (PlaRoM). PlaRoM consists of an imaging platform and a root extension profiling software application. This platform has been developed for multi parallel recordings of root growth phenotypes of up to 50 individual seedlings over several days, with high spatial and temporal resolution. PlaRoM can investigate root extension profiles of different genotypes in various growth conditions (e.g. light protocol, temperature, growth media). In particular, we present primary root growth kinetics that was collected over several days. Furthermore, addition of 0.01% sucrose to the growth medium provided sufficient carbohydrates to maintain reduced growth rates in extended nights. Further analysis of records obtained from the imaging platform revealed that lateral root development exhibits similar growth kinetics to the primary root, but that root hairs develop in a faster rate. The compatibility of PlaRoM with currently accessible software packages for studying root architecture will be discussed. We are aiming for a global application of our collected root images to analytical tools provided in remote locations.


2021 ◽  
Author(s):  
Pierre-Mathieu Pélissier ◽  
Hans Motte ◽  
Tom Beeckman

Abstract Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics towards nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.


2018 ◽  
Vol 30 (1) ◽  
pp. 101-116 ◽  
Author(s):  
Kasper van Gelderen ◽  
Chiakai Kang ◽  
Richard Paalman ◽  
Diederik Keuskamp ◽  
Scott Hayes ◽  
...  

Author(s):  
Mercedes Schroeder ◽  
Melissa Y. Gomez ◽  
Nathan K. McLain ◽  
Emma Gachomo

Beneficial rhizobacteria can stimulate changes in plant root development. While root system growth is mediated by multiple factors, the regulated distribution of the phytohormone auxin within root tissues plays a principal role. Auxin transport facilitators help to generate the auxin gradients and maxima that determine root structure. Here, we show that the plant growth-promoting rhizobacterial strain Bradyrhizobium japonicum IRAT FA3 influences specific auxin efflux transporters to alter Arabidopsis thaliana root morphology. Gene expression profiling of host transcripts in control and B. japonicum-inoculated roots of the wild type A. thaliana accession Col-0 confirmed upregulation of PIN2, PIN3, PIN7 and ABCB19 with B. japonicum and identified genes potentially contributing to a diverse array of auxin-related responses. Co-cultivation of the bacterium with loss-of-function auxin efflux transport mutants revealed that B. japonicum requires PIN3, PIN7 and ABCB19 to increase lateral root development and utilizes PIN2 to reduce primary root length. Accelerated lateral root primordia production due to B. japonicum was not observed in single pin3, pin7 or abcb19 mutants, suggesting independent roles for PIN3, PIN7 and ABCB19 during the plant-microbe interaction. Our work demonstrates B. japonicum’s influence over host transcriptional reprogramming during plant interaction with this beneficial microbe and the subsequent alterations to root system architecture.


2020 ◽  
Vol 38 (4) ◽  
pp. 143-148
Author(s):  
G. W. Watson ◽  
A.M. Hewitt

Abstract The number and size of lateral roots of a tree seedling can be evaluated visually, and could potentially be used to select plants with better root systems early in nursery production. To evaluate how root architecture develops in young trees, root architecture of 37 species of trees was compared at two stages of development: as harvested seedlings, and then one year after replanting. The total number of lateral roots and the number of roots >2mm (0.08 in) diameter that were present on the portion of the taproot remaining on seedlings after standard root pruning were recorded. Neither could consistently predict the number of lateral roots on the root system one year after replanting. Development of roots (sum of diameters) regenerated from the cut end of the seedling taproot was equal or greater than lateral root development in 84 percent of evaluated species. Even when regenerated root development was significantly less than lateral root development, the regenerated roots still comprised up to 44 percent of the root system. Regenerated roots from the cut end of the taproot can become a major component of the architecture of the structural root system in nursery stock. Index words: structural roots, nursery production, root regeneration. Species used in this study: European black alder (Alnus glutinosa Gaertn.), green ash (Fraxinus pennsylvanica Marshall), quaking aspen (Populus tremuloides Michx.), European white birch. (Betula pendula Roth), river birch (Betula nigra L.), black locust (Robinia pseudoacacia L.), northern catalpa (Catalpa speciosa (Warder) Warder ex Engelm.), Mazzard cherry [Prunus avium [L.) L.], chokecherry (Prunus virginiana L.), American elm (Ulmus americana L.), Siberian elm (Ulmus pumilia L.), goldenchain tree (Laburnum anagyroides Medik.), northern hackberry (Celtis occidentalis L.), Cockspur hawthorn (Crateagus crus-galli L.), single seed hawthorn (Crateagus monogyna Jacq.), honeylocust (Gleditsia tricanthos L.), Japanese pagodatree [Sophora japonica (L.) Schott], Katsura tree (Cercidiphyllum japonicum Siebold & Zucc.), Kentucky coffee tree [Gymnocladus dioicus (L.) K. Koch], littleleaf linden (Tilia cordata Mill.), boxelder (Acer negundo L.), hedge maple (Acer campestre L.), Norway maple (Acer platanoides L.), red maple (Acer rubrum L.), silver maple (Acer saccharinum L.), sugar maple (Acer saccharum Marshall), sycamore maple (Acer pseudoplatanus L.), English Oak (Quercus robur L.), northern red oak (Quercus rubra L.), Siberian peashrub (Caragana arborescens Lam.), American plum (Prunus Americana Marshall ), Myrobalan plum (Prunus cerasifera Ehrh.), redbud (Cercis Canadensis L.), Russian olive (Elaeagnus angustifoliaI L.), tuliptree (Liriodendron tulipifera L.), black walnut (Juglans nigra L.), Japanese zelkova (Zelkova serrata (Thunb.) Makino).


2019 ◽  
Vol 181 (2) ◽  
pp. 480-498 ◽  
Author(s):  
Xi Zhang ◽  
Yaning Cui ◽  
Meng Yu ◽  
Bodan Su ◽  
Wei Gong ◽  
...  

2016 ◽  
Vol 30 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Guodong Zha ◽  
Bochu Wang ◽  
Junyu Liu ◽  
Jie Yan ◽  
Liqing Zhu ◽  
...  

Abstract The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.


Sign in / Sign up

Export Citation Format

Share Document