scholarly journals Regulation of Postharvest Tomato Fruit Ripening by Endogenous Salicylic Acid

2021 ◽  
Vol 12 ◽  
Author(s):  
Chunoti Changwal ◽  
Tushita Shukla ◽  
Zakir Hussain ◽  
Neera Singh ◽  
Abhijit Kar ◽  
...  

Exogenous application of salicylic acid (SA) has been known for delaying ripening in many fruit and vegetables. But the function of endogenous SA in relation to postharvest fruit performance is still unexplored. To understand the role of endogenous SA in postharvest fruit ripening of tomato, 33 tomato lines were examined for their endogenous SA content, membrane stability index (MSI), and shelf life (SL) at turning and red stages of tomato fruit ripening. Six tomato lines having contrasting shelf lives from these categories were subjected further for ethylene (ET) evolution, 1-aminocyclopropane-1-carboxylic acid synthase (ACS), 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), polygalacturonase (PG), pectin methyl esterase (PME), antioxidant assays and lipid peroxidation. It was found that high endogenous SA has a direct association with low ET evolution, which leads to the high SL of fruit. High lycopene content was also found to be correlated with high SA. Total antioxidants, PG, and PME decreased and lipid peroxidation increased from turning to red stage of tomato fruit development. Furthermore, these lines were subjected to expression analysis for SA biosynthesis enzymes viz. Solanum lycopersicum Isochorismate Synthase (SlICS) and SlPAL. Real-time PCR data revealed that high SL lines have high SlPAL4 expression and low SL lines have high SlPAL6 expression. Based on the results obtained in this study, it was concluded that endogenous SA regulates ET evolution and SL with the aid of the antioxidative defense system, and SlPAL4 and SlPAL6 genes play significant but opposite roles during fruit ripening.

2020 ◽  
Vol 71 (12) ◽  
pp. 3759-3759
Author(s):  
Ying Gao ◽  
Wei Wei ◽  
Zhongqi Fan ◽  
Xiaodan Zhao ◽  
Yiping Zhang ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1821
Author(s):  
Changan Zhu ◽  
Shaofang Wu ◽  
Ting Sun ◽  
Zhiwen Zhou ◽  
Zhangjian Hu ◽  
...  

Fruits are excellent sources of essential vitamins and health-boosting minerals. Recently, regulation of fruit ripening by both internal and external cues for the improvement of fruit quality and shelf life has received considerable attention. Rosmarinic acid (RA) is a kind of natural plant-derived polyphenol, widely used in the drug therapy and food industry due to its distinct physiological functions. However, the role of RA in plant growth and development, especially at the postharvest period of fruits, remains largely unknown. Here, we demonstrated that postharvest RA treatment delayed the ripening in tomato fruits. Exogenous application of RA decreased ripening-associated ethylene production and inhibited the fruit color change from green to red based on the decline in lycopene accumulation. We also found that the degradation of sucrose and malic acid during ripening was significantly suppressed in RA-treated tomato fruits. The results of metabolite profiling showed that RA application promoted the accumulation of multiple amino acids in tomato fruits, such as aspartic acid, serine, tyrosine, and proline. Meanwhile, RA application also strengthened the antioxidant system by increasing both the activity of antioxidant enzymes and the contents of reduced forms of antioxidants. These findings not only unveiled a novel function of RA in fruit ripening, but also indicated an attractive strategy to manage and improve shelf life, flavor, and sensory evolution of tomato fruits.


2015 ◽  
Vol 66 (15) ◽  
pp. 4483-4495 ◽  
Author(s):  
Benzhong Zhu ◽  
Yongfang Yang ◽  
Ran Li ◽  
Daqi Fu ◽  
Liwei Wen ◽  
...  

2012 ◽  
Vol 63 (15) ◽  
pp. 5705-5716 ◽  
Author(s):  
Fei Xu ◽  
Shu Yuan ◽  
Da-Wei Zhang ◽  
Xin Lv ◽  
Hong-Hui Lin

Sign in / Sign up

Export Citation Format

Share Document