scholarly journals Corrigendum: Root Handling Affects Carboxylates Exudation and Phosphate Uptake of White Lupin Roots

2021 ◽  
Vol 12 ◽  
Author(s):  
Raphael Tiziani ◽  
Tanja Mimmo ◽  
Fabio Valentinuzzi ◽  
Youry Pii ◽  
Silvia Celletti ◽  
...  
Keyword(s):  
2020 ◽  
Vol 11 ◽  
Author(s):  
Raphael Tiziani ◽  
Tanja Mimmo ◽  
Fabio Valentinuzzi ◽  
Youry Pii ◽  
Silvia Celletti ◽  
...  
Keyword(s):  

1997 ◽  
Vol 35 (10) ◽  
pp. 87-94 ◽  
Author(s):  
R. Sorm ◽  
J. Wanner ◽  
R. Saltarelli ◽  
G. Bortone ◽  
A. Tilche

The phenomenon of anoxic phosphate uptake with simultaneous denitrification was studied. For this purpose kinetic batch tests have been carried out by using the activated sludge samples from three modifications of nutrient removal activated sludge systems: two based on an anaerobic-anoxic-oxic (A2/O) system and a third on an anaerobic-oxic (A/O) system. The results showed significant differences in anoxic phosphate uptake rate between activated sludge which was alternatively exposed to anoxic conditions and activated sludge from the A/O arrangement. These differences were also accompanied by different denitrification rates. Simultaneously with batch experiments the microscopic observation of activated sludge samples was carried out. Neisser and Gram stained samples showed clear differences in shape, size and distribution of polyphosphate accumulating bacteria between A2/O and A/O Processes. Moreover, experiments performed using genetic probes confirmed the differences in microbiological composition of activated sludge samples from different nutrient removal system arrangements.


1985 ◽  
Vol 249 (3) ◽  
pp. F346-F355
Author(s):  
L. M. Sakhrani ◽  
N. Tessitore ◽  
S. G. Massry

We examined the effects of acute changes in extracellular and intracellular calcium on transport processes in primary culture of proximal rabbit renal cells. A change in extracellular calcium from 0 to 3 mM inhibited amiloride-sensitive sodium uptake by 30%, and this effect was maximal at 1 mM calcium. Other polyvalent cations (Mn2+, Mg2+, La3+, and Ba2+) produced quantitatively similar inhibition of amiloride-sensitive sodium uptake compared with calcium. An increase in cytosolic calcium produced by calcium loading (20 mM) or by A23187 (20 microM) resulted in an inhibition of 25-40% of amiloride-sensitive sodium uptake. Moreover, quinidine (10(-4)M) and ruthenium red (3 microM), agents presumed to increase cytosolic calcium, inhibited amiloride-sensitive sodium uptake by 20-60%. Both these agents also inhibited sodium-dependent phosphate uptake by 20% but had no effect on ouabain-sensitive 86Rb+ uptake or on sodium-dependent alpha-methylglucoside uptake. Our data indicate that increases in extracellular calcium inhibit amiloride-sensitive sodium uptake and increases in cytosolic calcium inhibit sodium-dependent phosphate and amiloride-sensitive sodium uptakes. The effect of extracellular calcium may be due to charge screening and/or binding to the negatively charged plasma membrane or due to alterations in membrane fluidity.


2021 ◽  
Vol 22 (8) ◽  
pp. 3856
Author(s):  
Sandra Rychel-Bielska ◽  
Anna Surma ◽  
Wojciech Bielski ◽  
Bartosz Kozak ◽  
Renata Galek ◽  
...  

White lupin (Lupinus albus L.) is a pulse annual plant cultivated from the tropics to temperate regions for its high-protein grain as well as a cover crop or green manure. Wild populations are typically late flowering and have high vernalization requirements. Nevertheless, some early flowering and thermoneutral accessions were found in the Mediterranean basin. Recently, quantitative trait loci (QTLs) explaining flowering time variance were identified in bi-parental population mapping, however, phenotypic and genotypic diversity in the world collection has not been addressed yet. In this study, a diverse set of white lupin accessions (n = 160) was phenotyped for time to flowering in a controlled environment and genotyped with PCR-based markers (n = 50) tagging major QTLs and selected homologs of photoperiod and vernalization pathway genes. This survey highlighted quantitative control of flowering time in white lupin, providing statistically significant associations for all major QTLs and numerous regulatory genes, including white lupin homologs of CONSTANS, FLOWERING LOCUS T, FY, MOTHER OF FT AND TFL1, PHYTOCHROME INTERACTING FACTOR 4, SKI-INTERACTING PROTEIN 1, and VERNALIZATION INDEPENDENCE 3. This revealed the complexity of flowering control in white lupin, dispersed among numerous loci localized on several chromosomes, provided economic justification for future genome-wide association studies or genomic selection rather than relying on simple marker-assisted selection.


2021 ◽  
Author(s):  
Adrien Frémont ◽  
Eszter Sas ◽  
Mathieu Sarrazin ◽  
Emmanuel Gonzalez ◽  
Jacques Brisson ◽  
...  
Keyword(s):  

1991 ◽  
Vol 266 (1) ◽  
pp. 372-379 ◽  
Author(s):  
J R Raymond ◽  
F J Albers ◽  
J P Middleton ◽  
R J Lefkowitz ◽  
M G Caron ◽  
...  

1986 ◽  
Vol 251 (1) ◽  
pp. C120-C127 ◽  
Author(s):  
N. Tessitore ◽  
L. M. Sakhrani ◽  
S. G. Massry

We investigated the quantitative relationship between cellular ATP concentration and Na+-K+-ATPase activity as measured by ouabain-sensitive 86Rb influx in rabbit proximal renal cells. Cellular ATP was reduced in a stepwise manner by rotenone (10(-7) to 10(-5) M) and was increased by 10 mM adenosine. During these maneuvers, ouabain-sensitive 86Rb influx was linearly related to cellular ATP and did not saturate up to 9.9 mM ATP. In contrast, Na+-K+-ATPase activity in membranes prepared from these cells saturated at 2.0 mM ATP at various sodium (10-100 mM) and potassium (4-100 mM) concentrations. Sodium-dependent phosphate uptake and alpha-methylglucoside (alpha-MG) uptake were both inhibited to a similar degree when cellular ATP was reduced. We conclude that 1) the ATP requirement for saturation of Na+-K+-ATPase is higher in intact renal cells than in the membranes, and 2) the uptake of phosphate and alpha-MG are similarly influenced by reduction in ATP. This effect of ATP on phosphate and AMG uptake is most likely an indirect one and is secondary to changes in the sodium gradient across the cell.


Sign in / Sign up

Export Citation Format

Share Document