scholarly journals Morphological, Physiological, and Molecular Responses of Sweetly Fragrant Luculia gratissima During the Floral Transition Stage Induced by Short-Day Photoperiod

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiongfang Liu ◽  
Youming Wan ◽  
Jing An ◽  
Xiujiao Zhang ◽  
Yurong Cao ◽  
...  

Photoperiod-regulated floral transition is vital to the flowering plant. Luculia gratissima “Xiangfei” is a flowering ornamental plant with high development potential economically and is a short-day woody perennial. However, the genetic regulation of short-day-induced floral transition in L. gratissima is unclear. To systematically research the responses of L. gratissima during this process, dynamic changes in morphology, physiology, and transcript levels were observed and identified in different developmental stages of long-day- and short-day-treated L. gratissima plants. We found that floral transition in L. gratissima occurred 10 d after short-day induction, but flower bud differentiation did not occur at any stage under long-day conditions. A total of 1,226 differentially expressed genes were identified, of which 146 genes were associated with flowering pathways of sugar, phytohormones, photoperiod, ambient temperature, and aging signals, as well as floral integrator and meristem identity genes. The trehalose-6-phosphate signal positively modulated floral transition by interacting with SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN 4 (SPL4) in the aging pathway. Endogenous gibberellin, abscisic acid, cytokinin, and jasmonic acid promoted floral transition, whereas strigolactone inhibited it. In the photoperiod pathway, FD, CONSTANS-LIKE 12, and nuclear factors Y positively controlled floral transition, whereas PSEUDO-RESPONSE REGULATOR 7, FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1, and LUX negatively regulated it. SPL4 and pEARLI1 positively affected floral transition. Suppressor of Overexpression of Constans 1 and AGAMOUSLIKE24 integrated multiple flowering signals to modulate the expression of FRUITFULL/AGL8, AP1, LEAFY, SEPALLATAs, SHORT VEGETATIVE PHASE, and TERMINAL FLOWER 1, thereby regulating floral transition. Finally, we propose a regulatory network model for short-day-induced floral transition in L. gratissima. This study improves our understanding of flowering time regulation in L. gratissima and provides knowledge for its production and commercialization.

2020 ◽  
Author(s):  
Xiongfang Liu ◽  
Youming Wan ◽  
Jing An ◽  
Xiujiao Zhang ◽  
Yurong Cao ◽  
...  

Abstract Background: Photoperiod-regulated floral transition is vital to the flowering plant. Luculia gratissima ‘Xiangfei’ is a flowering ornamental plant with high development potential and is a short-day woody perennial. However, the genetic regulation of short-day-induced floral transition in L. gratissima is unclear. To systematically research the responses of L. gratissima during this process, dynamic changes in morphology, physiology, and transcript levels were observed and identified in different developmental stages of long-day and short-day-treated shoot apexes. Results: The results showed that floral transition in L. gratissima occurred 10 d after short-day induction, but flower bud differentiation did not occur under long-day conditions. A total of 1,226 differentially expressed genes were identified, of which 146 genes were associated with flowering pathways of sugar, phytohormones, photoperiod, ambient temperature, and aging signals, as well as floral integrator and meristem identity genes. The trehalose-6-phosphate signal positively modulated floral transition by interacting with SPL4 in the aging pathway. Endogenous gibberellin, abscisic acid, cytokinin, and jasmonic acid promoted floral transition, whereas strigolactone inhibited it. In the photoperiod pathway, FD, COL12, and NF-Ys positively controlled floral transition, whereas PRR7, FKF1, and LUX negatively regulated it. SPL4 and pEARLI1 positively affected floral transition. SOC1 and AGL24 integrated multiple flowering signals to modulate the expression of FUL/AGL8, AP1, LFY, SEPs, SVP, and TFL1, thereby regulating floral transition. Finally, we propose a regulatory network model for short-day-induced floral transition in L. gratissima. Conclusions: Short-day photoperiod activated systemic responses of morphology, physiology, and transcript levels in L. gratissima and induced the generation of floral transition signals in the photoperiod pathway. Furthermore, multiple flowering signal pathways including phytohormone-, sugar-, temperature-, age-related genes synergistically control this process. This study improves our understanding of flowering time regulation in L. gratissima and provides knowledge for its production and commercialization.


Author(s):  
Nezihe Köksal ◽  
Sara Yasemin ◽  
Aslıhan Özkaya

Photoperiod is one of the environmental signals that controls of the flowering time on bedding plants. Marigold is a bedding plant which includes obligate or facultative short day and day neutral cultivars. Flowering time of these plants, even day neutral cultivars, delay in extreme hot and long day condition in summer. In this study, the effects of photoperiodic conditions (short day and long day) on flowering and growth of two different day neutral marigold cultivars (Discovery Orange and Discovery Yellow) were investigated. Natural day length (14 hours) was considered as long day condition. Short day condition (8 hours) was conducted artificially by darkening treatment. Therefore, duration to first flower bud formation, duration to first flowering, plant canopy height, plant canopy width, lateral branch number, flower number, main peduncle length, main peduncle thickness, root collar thickness, stem thickness, dry weights of plants (root, shoot, total plant) were evaluated. At the end of the experiment, it was determined that short day conditions reduce duration to first flower bud formation and duration to first flowering. The artificial short day conditions resulted as 13 days early flowering in 'Discovery Orange' and 5 days early flowering in 'Discovery Yellow' cultivar.


2017 ◽  
Vol 8 ◽  
Author(s):  
Andrew N. Doust ◽  
Margarita Mauro-Herrera ◽  
John G. Hodge ◽  
Jessica Stromski

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6420 ◽  
Author(s):  
Shengji Wang ◽  
Chunlai Zhang ◽  
Jing Zhao ◽  
Renhua Li ◽  
Jinhui Lv

Genes encoding pseudo-response regulator (PRR) proteins play significant roles in plant circadian clocks. In this study, four genes related to flowering time were isolated from Chrysanthemum morifolium. Phylogenetic analysis showed that they are highly homologous to the counterparts of PRRs of Helianthus annuus and named as CmPRR2, CmPRR7, CmPRR37, and CmPRR73. Conserved motifs prediction indicated that most of the closely related members in the phylogenetic tree share common protein sequence motifs, suggesting functional similarities among the PRR proteins within the same subtree. In order to explore functions of the genes, we selected two Chrysanthemum varieties for comparison; that is, a short-day sensitive Zijiao and a short-day insensitive Aoyunbaixue. Compared to Aoyunbaixue, Zijiao needs 13 more days to complete the flower bud differentiation. Evidence from spatio-temporal gene expression patterns demonstrated that the CmPRRs are highly expressed in flower and stem tissues, with a growing trend across the Chrysanthemum developmental process. In addition, we also characterized the CmPRRs expression patterns and found that CmPRRs can maintain their circadian oscillation features to some extent under different photoperiod treatment conditions. These lines of evidence indicated that the four CmPRRs undergo circadian oscillation and possibly play roles in regulating the flowering time of C. morifolium.


2001 ◽  
Vol 126 (6) ◽  
pp. 710-721 ◽  
Author(s):  
Neil O. Anderson ◽  
Peter D. Ascher

Commercial garden and greenhouse chrysanthemums [Dendranthema ×grandiflora (Ramat.) Kitam. (syn. Chrysanthemum xmorifolium Ramat.)] are facultative short-day plants for flower bud initiation, obligate short-day plants for flower bud development, and are categorized into short-day response groups. Flower initiation can be delayed by high night temperatures. Recent research has identified true day-neutral genotypes. The purpose of this investigation was to test environments for selecting genotypes that are both day-neutral and heat-delay insensitive. One greenhouse and 18 garden genotypes were selected. A series of environments were used to select for day-neutral genotypes and then differentiate between these genotypes for heat delay insensitivity: short days, long days/red light, long days/far red light and high temperatures, and natural day lengths under field conditions. Day-neutral selections from these environments were then grown in a fifth environment of long days/continuous far red and red light with high temperature. Data were collected on the number of days to first and third flower, long day leaf number, stem length, number of strap-shaped leaves subtending the terminal flower, internode lengths, number of nodes with axillary branching, and flower bud development of the first to the sixth flowers. Genotypes required 3 to 8 weeks for complete flower bud initiation/development. Flowering responses in the first four environments were highly significant for both the first and third flowers. Genotypes ranged from obligate short-day to day-neutral for the first six flowers. Three day-neutral genotypes were selected that differed significantly for all traits in the fifth environment; flower bud development with the first six flowers occurred with only one genotype, 83-267-3. Broad sense heritability estimates ranged from h2 = 0.75 for number of nodes with axillary branching, h2 = 0.79 for long day leaf number and number of strap-shaped leaves, to h2 = 0.91 for stem length. An ideotype for day-neutral and heat-delay-insensitive garden chrysanthemums was developed for use in breeding programs.


2011 ◽  
Vol 130-134 ◽  
pp. 3781-3783
Author(s):  
Yue Ping Ma ◽  
Si Lan Dai

After 50 days long-day maintenance ofD. lavandulifolium, seedlings with 6 leaves had different flower bud under different photoperiodic induction during 30 days treatment. The result showed that maximum flower bud (70%) was observed in 12hr light/ 12hr dark and 13hr light/11hr dark after 30 days induction. 11h light/13h dark also showed good flower bud (60%). 30% flowering were observed on 9hr light. None flower bud was observed in control plant. The earliest bud appeared only need 10 days after short-day induction.


1994 ◽  
Vol 72 (4) ◽  
pp. 533-538 ◽  
Author(s):  
J. Y. C. Reekie ◽  
P. R. Hicklenton ◽  
E. G. Reekie

This study was undertaken to determine if the effect of elevated CO2 on flowering phenology is a function of the photoperiodic response of the species involved. Four long-day plants, Achillea millefolium, Callistephus chinensis, Campanula isophylla, and Trachelium caeruleum, and four short-day plants, Dendranthema grandiflora, Kalanchoe blossfeldiana, Pharbitis nil, and Xanthium pensylvanicum, were grown under inductive photoperiods (9 h for short day and 17 h for long day) at either 350 or 1000 μL/L CO2. Time of visible flower bud formation, flower opening, and final plant biomass were assessed. Elevated CO2 advanced flower opening in all four long-day species and delayed flowering in all four short-day species. In the long-day species, the effect of CO2 was primarily on bud initiation; all four species formed buds earlier at high CO2. Bud development, the difference in time between flower opening and bud initiation, was advanced in only one long-day species, Callistephus chinensis. Mixed results were obtained for the short-day species. Elevated CO2 exerted no effects on bud initiation but delayed bud development in Dendranthema and Kalanchoe. In Xanthium, bud initiation rather than bud development was delayed. Data on bud initiation and development were not obtained for Pharbitis. The negative effect of CO2 upon phenology in the short-day species was not associated with negative effects on growth. Elevated CO2 increased plant size in both long-day and short-day species. Key words: phenology, bud initiation, flower opening, size at flowering, photoperiodism.


HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 416-419 ◽  
Author(s):  
Ariana P. Torres ◽  
Roberto G. Lopez

Tecoma stans (L. Juss. Kunth) ‘Mayan Gold’ is a tropical flowering plant that was selected as a potential new greenhouse crop for its physical appearance and drought and heat tolerance. The objective of this study was to quantify how temperature during the finishing stage and photoperiod during propagation and finishing stages influence growth, flowering, and quality. In Expt. 1, plants were propagated from seed under four photoperiods (9, 12, 14, or 16 h) for 35 days. Under long-day (LD) photoperiods (14 h or greater), seedlings were 3.0 to 3.7 cm taller than those propagated under 9-h photoperiods. During the finishing stage, days to first open flower, shoot dry mass, and number of nodes below the terminal inflorescence were reduced when plants were grown under LD photoperiods. In addition, number of open flowers and branches increased under LD photoperiods. Few plants developed visible buds when grown under short-day (SD) photoperiods (12 h or less). In Expt. 2, plants were forced at average daily temperatures of 19, 20, or 22 °C after transplant. Time to first open flower was reduced by 7 days as temperature increased. Inversely, number of visible buds increased by 57 as temperature increased from 19 to 22 °C. Under the experimental conditions tested, the most rapid, complete, and uniform flowering of Tecoma occurred when plants were propagated and finished under LD photoperiods and forced at 22 °C.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 113
Author(s):  
Xueqiang Cui ◽  
Jieling Deng ◽  
Changyan Huang ◽  
Xuan Tang ◽  
Xianmin Li ◽  
...  

Dendrobium nestor is a famous orchid species in the Orchidaceae family. There is a diversity of flower colorations in the Dendrobium species, but knowledge of the genes involved and molecular mechanism underlying the flower color formation in D. nestor is less studied. Therefore, we performed transcriptome profiling using Illumina sequencing to facilitate thorough studies of the purple color formation in petal samples collected at three developmental stages, namely—flower bud stage (F), half bloom stage (H), and full bloom stage (B) in D. nestor. In addition, we identified key genes and their biosynthetic pathways as well as the transcription factors (TFs) associated with purple flower color formation. We found that the phenylpropanoid–flavonoid–anthocyanin biosynthesis genes such as phenylalanine ammonia lyase, chalcone synthase, anthocyanidin synthase, and UDP-flavonoid glucosyl transferase, were largely up-regulated in the H and B samples as compared to the F samples. This upregulation might partly account for the accumulation of anthocyanins, which confer the purple coloration in these samples. We further identified several differentially expressed genes related to phytohormones such as auxin, ethylene, cytokinins, salicylic acid, brassinosteroid, and abscisic acid, as well as TFs such as MYB and bHLH, which might play important roles in color formation in D. nestor flower. Sturdy upregulation of anthocyanin biosynthetic structural genes might be a potential regulatory mechanism in purple color formation in D. nestor flowers. Several TFs were predicted to regulate the anthocyanin genes through a K-mean clustering analysis. Our study provides valuable resource for future studies to expand our understanding of flower color development mechanisms in D. nestor.


Sign in / Sign up

Export Citation Format

Share Document