scholarly journals Genotypic Variation of Endophytic Nitrogen-Fixing Activity and Bacterial Flora in Rice Stem Based on Sugar Content

2021 ◽  
Vol 12 ◽  
Author(s):  
Takanori Okamoto ◽  
Rina Shinjo ◽  
Arisa Nishihara ◽  
Kazuma Uesaka ◽  
Aiko Tanaka ◽  
...  

Enhancement of the nitrogen-fixing ability of endophytic bacteria in rice is expected to result in improved nitrogen use under low-nitrogen conditions. Endophytic nitrogen-fixing bacteria require a large amount of energy to fix atmospheric nitrogen. However, it is unknown which carbon source and bacteria would affect nitrogen-fixing activity in rice. Therefore, this study examined genotypic variations in the nitrogen-fixing ability of rice plant stem as affected by non-structural carbohydrates and endophytic bacterial flora in field-grown rice. In the field experiments, six varieties and 10 genotypes of rice were grown in 2017 and 2018 to compare the acetylene reduction activity (nitrogen-fixing activity) and non-structural carbohydrates (glucose, sucrose, and starch) concentration in their stems at the heading stage. For the bacterial flora analysis, two genes were amplified using a primer set of 16S rRNA and nitrogenase (NifH) gene-specific primers. Next, acetylene reduction activity was correlated with sugar concentration among genotypes in both years, suggesting that the levels of soluble sugars influenced stem nitrogen-fixing activity. Bacterial flora analysis also suggested the presence of common and genotype-specific bacterial flora in both 16S rRNA and nifH genes. Similarly, bacteria classified as rhizobia, such as Bradyrhizobium sp. (Alphaproteobacteria) and Paraburkholderia sp. (Betaproteobacteria), were highly abundant in all rice genotypes, suggesting that these bacteria make major contributions to the nitrogen fixation process in rice stems. Gammaproteobacteria were more abundant in CG14 as well, which showed the highest acetylene reduction activity and sugar concentration among genotypes and is also proposed to contribute to the higher amount of nitrogen-fixing activity.

1979 ◽  
Vol 25 (10) ◽  
pp. 1197-1200 ◽  
Author(s):  
R. C. Shearman ◽  
W. L. Pedersen ◽  
R. V. Klucas ◽  
E. J. Kinbacher

Associative nitrogen fixation in Kentucky bluegrass (Poa pratensis L.) turfs inoculated with five nitrogen-fixing bacterial isolates was evaluated using the acetylene reduction assay and nitrogen accumulation as indicators of fixation. 'Park' and 'Nugget' Kentucky bluegrass turfs were grown in controlled environment chambers and inoculated with Klebsiella pneumoniae (W-2, W-6, and W-14), Erwinia herbicola (W-8), and Enterobacter cloacae (W-11). 'Park' inoculated with K. pneumoniae (W-6) had significant acetylene reduction activity using undisturbed turfs. Other treatments including turfs treated with heat-killed cells had no significant difference in acetylene reduction. In a second study, 'Park' and 'South Dakota Certified' turfs were grown in a greenhouse and inoculated with K. pneumoniae (W-6) and E. herbicola (W-8). 'Park' inoculated with K. pneumoniae (W-6) had increased acetylene reduction activity rates and also a greater nitrogen accumulation in aerial tissues when compared to controls. Acetylene reduction activity was correlated (r = 0.92) to nitrogen accumulation. Other treatments did not effectively increase acetylene reduction activity or nitrogen accumulation.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 287 ◽  
Author(s):  
Khin Myat Soe ◽  
Aung Zaw Htwe ◽  
Kyi Moe ◽  
Abiko Tomomi ◽  
Takeo Yamakawa

Chickpea (Cicer arietinum L.) is one of the world’s main leguminous crops that provide chief source of food for humans. In the present study, we characterized thirty isolates of indigenous chickpea rhizobia from Myanmar based on the sequence analysis of the bacterial 16S rRNA gene. The sequence analysis confirmed that all isolates were categorized and identified as the genus Mesorhizobium and they were conspecific with M. plurifarium, M. muliense, M. tianshanense, and M. sp. This is the first report describing M. muliense, M. tianshanense, and M. plurifurium from different geographical distribution of indigenous mesorhizobia of chickpea in Myanmar. In order to substitute the use of chemical fertilizers in legume production, there is a need for the production of Biofertilizers with rhizobial inoculants. The effectiveness of Myanmar Mesorhizobim strains isolated from soil samples of major chickpea growing areas of Myanmar for plant growth and nitrogen fixation were studied in pot experiments. The nodule dry weight and acetylene reduction activity of the plant inoculated with Mesorhizobium tianshanense SalCP19 was significantly higher than the other tested isolates in Yezin-4 chickpea variety. But, Mesorhizobium sp. SalCP17 was showed high level of acetylene reduction activity per plant in Yezin-6 chickpea variety.


1989 ◽  
Vol 3 (4) ◽  
pp. 469-476 ◽  
Author(s):  
Ramzi M. Mohammad ◽  
W.F. Campbell ◽  
M.D. Rumbaugh

Sign in / Sign up

Export Citation Format

Share Document