scholarly journals Comparative Chloroplast Genomics and Phylogenetic Analysis of Zygophyllum (Zygophyllaceae) of China

2021 ◽  
Vol 12 ◽  
Author(s):  
Ling Zhang ◽  
Shu Wang ◽  
Chun Su ◽  
AJ Harris ◽  
Liang Zhao ◽  
...  

The genus Zygophyllum comprises over 150 species within the plant family Zygophyllaceae. These species predominantly grow in arid and semiarid areas, and about 20 occur in northwestern China. In this study, we sampled 24 individuals of Zygophyllum representing 15 species and sequenced their complete chloroplast (cp) genomes. For comparison, we also sequenced cp genomes of two species of Peganum from China representing the closely allied family, Nitrariaceae. The 24 cp genomes of Zygophyllum were smaller and ranged in size from 104,221 to 106,286 bp, each containing a large single-copy (LSC) region (79,245–80,439 bp), a small single-copy (SSC) region (16,285–17,146 bp), and a pair of inverted repeat (IR) regions (3,792–4,466 bp). These cp genomes contained 111–112 genes each, including 74–75 protein-coding genes (PCGs), four ribosomal RNA genes, and 33 transfer RNA genes, and all cp genomes showed similar gene order, content, and structure. The cp genomes of Zygophyllum appeared to lose some genes such as ndh genes and rRNA genes, of which four rRNA genes were in the SSC region, not in the IR regions. However, the SC and IR regions had greater similarity within Zygophyllum than between the genus and Peganum. We detected nine highly variable intergenic spacers: matK-trnQ, psaC-rps15, psbZ-trnG, rps7-trnL, rps15-trnN, trnE-trnT, trnL-rpl32, trnQ-psbK, and trnS-trnG. Additionally, we identified 156 simple sequence repeat (cpSSR) markers shared among the genomes of the 24 Zygophyllum samples and seven cpSSRs that were unique to the species of Zygophyllum. These markers may be useful in future studies on genetic diversity and relationships of Zygophyllum and closely related taxa. Using the sequenced cp genomes, we reconstructed a phylogeny that strongly supported the division of Chinese Zygophyllum into herbaceous and shrubby clades. We utilized our phylogenetic results along with prior morphological studies to address several remaining taxonomic questions within Zygophyllum. Specifically, we found that Zygophyllum kaschgaricum is included within Zygophyllum xanthoxylon supporting the present treatment of the former genus Sarcozygium as a subgenus within Zygophyllum. Our results provide a foundation for future research on the genetic resources of Zygophyllum.

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2426 ◽  
Author(s):  
Xiaofeng Shen ◽  
Shuai Guo ◽  
Yu Yin ◽  
Jingjing Zhang ◽  
Xianmei Yin ◽  
...  

We sequenced and analyzed the complete chloroplast genome of Aster tataricus (family Asteraceae), a Chinese herb used medicinally to relieve coughs and reduce sputum. The A. tataricus chloroplast genome was 152,992 bp in size, and harbored a pair of inverted repeat regions (IRa and IRb, each 24,850 bp) divided into a large single-copy (LSC, 84,698 bp) and a small single-copy (SSC, 18,250 bp) region. Our annotation revealed that the A. tataricus chloroplast genome contained 115 genes, including 81 protein-coding genes, 4 ribosomal RNA genes, and 30 transfer RNA genes. In addition, 70 simple sequence repeats (SSRs) were detected in the A. tataricus chloroplast genome, including mononucleotides (36), dinucleotides (1), trinucleotides (23), tetranucleotides (1), pentanucleotides (8), and hexanucleotides (1). Comparative chloroplast genome analysis of three Aster species indicated that a higher similarity was preserved in the IR regions than in the LSC and SSC regions, and that the differences in the degree of preservation were slighter between A. tataricus and A. altaicus than between A. tataricus and A. spathulifolius. Phylogenetic analysis revealed that A. tataricus was more closely related to A. altaicus than to A. spathulifolius. Our findings offer valuable information for future research on Aster species identification and selective breeding.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1517
Author(s):  
Se-Hwan Cheon ◽  
Min-Ah Woo ◽  
Sangjin Jo ◽  
Young-Kee Kim ◽  
Ki-Joong Kim

The genus Zoysia Willd. (Chloridoideae) is widely distributed from the temperate regions of Northeast Asia—including China, Japan, and Korea—to the tropical regions of Southeast Asia. Among these, four species—Zoysia japonica Steud., Zoysia sinica Hance, Zoysia tenuifolia Thiele, and Zoysia macrostachya Franch. & Sav.—are naturally distributed in the Korean Peninsula. In this study, we report the complete plastome sequences of these Korean Zoysia species (NCBI acc. nos. MF953592, MF967579~MF967581). The length of Zoysia plastomes ranges from 135,854 to 135,904 bp, and the plastomes have a typical quadripartite structure, which consists of a pair of inverted repeat regions (20,962~20,966 bp) separated by a large (81,348~81,392 bp) and a small (12,582~12,586 bp) single-copy region. In terms of gene order and structure, Zoysia plastomes are similar to the typical plastomes of Poaceae. The plastomes encode 110 genes, of which 76 are protein-coding genes, 30 are tRNA genes, and four are rRNA genes. Fourteen genes contain single introns and one gene has two introns. Three evolutionary hotspot spacer regions—atpB~rbcL, rps16~rps3, and rpl32~trnL-UAG—were recognized among six analyzed Zoysia species. The high divergences in the atpB~rbcL spacer and rpl16~rpl3 region are primarily due to the differences in base substitutions and indels. In contrast, the high divergence between rpl32~trnL-UAG spacers is due to a small inversion with a pair of 22 bp stem and an 11 bp loop. Simple sequence repeats (SSRs) were identified in 59 different locations in Z. japonica, 63 in Z. sinica, 62 in Z. macrostachya, and 63 in Z. tenuifolia plastomes. Phylogenetic analysis showed that the Zoysia (Zoysiinae) forms a monophyletic group, which is sister to Sporobolus (Sporobolinae), with 100% bootstrap support. Within the Zoysia clade, the relationship of (Z. sinica, Z japonica), (Z. tenuifolia, Z. matrella), (Z. macrostachya, Z. macrantha) was suggested.


2021 ◽  
Vol 46 (1) ◽  
pp. 162-174
Author(s):  
Ming-Hui Yan ◽  
Chun-Yang Li ◽  
Peter W. Fritsch ◽  
Jie Cai ◽  
Heng-Chang Wang

Abstract—The phylogenetic relationships among 11 out of the 12 genera of the angiosperm family Styracaceae have been largely resolved with DNA sequence data based on all protein-coding genes of the plastome. The only genus that has not been phylogenomically investigated in the family with molecular data is the monotypic genus Parastyrax, which is extremely rare in the wild and difficult to collect. To complete the sampling of the genera comprising the Styracaceae, examine the plastome composition of Parastyrax, and further explore the phylogenetic relationships of the entire family, we sequenced the whole plastome of P. lacei and incorporated it into the Styracaceae dataset for phylogenetic analysis. Similar to most others in the family, the plastome is 158189 bp in length and contains a large single-copy region of 88085 bp and a small single-copy region of 18540 bp separated by two inverted-repeat regions of 25781 bp each. A total of 113 genes was predicted, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic relationships among all 12 genera of the family were constructed with 79 protein-coding genes. Consistent with a previous study, Styrax, Huodendron, and a clade of Alniphyllum + Bruinsmia were successively sister to the remainder of the family. Parastyrax was strongly supported as sister to an internal clade comprising seven other genera of the family, whereas Halesia and Pterostyrax were both recovered as polyphyletic, as in prior studies. However, when we employed either the whole plastome or the large- or small-single copy regions as datasets, Pterostyrax was resolved as monophyletic with 100% support, consistent with expectations based on morphology and indicating that non-coding regions of the Styracaceae plastome contain informative phylogenetic signal. Conversely Halesia was still resolved as polyphyletic but with novel strong support.


2019 ◽  
Vol 48 (4) ◽  
pp. 1083-1089
Author(s):  
Yancai Shi ◽  
Shaofeng Jiang ◽  
Shilian Huang

Hybrid (Cynodonn dactylon × C. transvaalensis) is a widely distributed turfgrass and shows a great value of environment, horticulture and economic. Though, the chloroplast genome of C. dactylon has been reported, it might be helpful finding reasons that triploid bermudagrass shows a better drought and trampling tolerance than common bermudagrass through comparing chloroplast genome analysis. The present results showed the complete chloroplast genome of the C. dactylon × C. transvaalensis is 134655 bp in length. The tetramerous genome contained a large single copy (LSC) region (79,998 bp), a small single copy (SSC) region (12,517 bp), and a pair of inverted repeat (IR) regions (42,140 bp). In the chloroplast genome, 116 genes were predicted, including 83 protein-coding, 29 tRNA and 4 rRNA genes. Furthermore, a total of 80 repeat sequences were identified. Only 0.23% intergenicnon-collinear sequences were found between the chloroplast genome of Cynodon dactylon × C. transvaalensis and Cynodon dactylon.


2021 ◽  
Vol 104 (4) ◽  
pp. 003685042110599
Author(s):  
Dhafer Alzahrani ◽  
Enas Albokhari ◽  
Abidina Abba ◽  
Samaila Yaradua

Caylusea hexagyna and Ochradenus baccatus are two species in the Resedaceae family. In this study, we analysed the complete plastid genomes of these two species using high-throughput sequencing technology and compared their genomic data. The length of the plastid genome of C. hexagyna was 154,390 bp while that of O. baccatus was 153,380 bp. The lengths of the inverted repeats (IR) regions were 26,526 bp and 26,558 bp, those of the large single copy (LSC) regions were 83,870 bp and 83,023 bp; and those of the small single copy (SSC) regions were 17,468 bp and 17,241 bp in C. hexagyna and O. baccatus, respectively. Both genomes consisted of 113 genes: 79 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Repeat analysis showed that the plastid genome included all types of repeats, with more frequent occurrences of palindromic sequences. Comparative studies of SSR markers showed that there were 256 markers in C. hexagyna and 255 in O. baccatus; the majority of the SSRs in these plastid genomes were mononucleotide repeats (A/T). All the clusters in the phylogenetic tree had high support. This study reported the first complete plastid genomes of the genera Caylusea and Ochradenus and the first for the Resedaceae family.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 283
Author(s):  
Fei Dong ◽  
Zhicong Lin ◽  
Jing Lin ◽  
Ray Ming ◽  
Wenping Zhang

Rambutan (Nephelium lappaceum L.) is an important fruit tree that belongs to the family Sapindaceae and is widely cultivated in Southeast Asia. We sequenced its chloroplast genome for the first time and assembled 161,321 bp circular DNA. It is characterized by a typical quadripartite structure composed of a large (86,068 bp) and small (18,153 bp) single-copy region interspersed by two identical inverted repeats (IRs) (28,550 bp). We identified 132 genes including 78 protein-coding genes, 29 tRNA and 4 rRNA genes, with 21 genes duplicated in the IRs. Sixty-three simple sequence repeats (SSRs) and 98 repetitive sequences were detected. Twenty-nine codons showed biased usage and 49 potential RNA editing sites were predicted across 18 protein-coding genes in the rambutan chloroplast genome. In addition, coding gene sequence divergence analysis suggested that ccsA, clpP, rpoA, rps12, psbJ and rps19 were under positive selection, which might reflect specific adaptations of N. lappaceum to its particular living environment. Comparative chloroplast genome analyses from nine species in Sapindaceae revealed that a higher similarity was conserved in the IR regions than in the large single-copy (LSC) and small single-copy (SSC) regions. The phylogenetic analysis showed that N. lappaceum chloroplast genome has the closest relationship with that of Pometia tomentosa. The understanding of the chloroplast genomics of rambutan and comparative analysis of Sapindaceae species would provide insight into future research on the breeding of rambutan and Sapindaceae evolutionary studies.


Author(s):  
Shanshan Liu ◽  
Shiyin Feng ◽  
Yuying Huang ◽  
Wenli An ◽  
Zerui Yang ◽  
...  

Abstract Background Buddleja lindleyana Fort., which belongs to the Loganiaceae with a distribution throughout the tropics, is widely used as an ornamental plant in China. Buddleja contains several morphologically similar species, which need to be identified by molecular identification. But there is little molecular research on the genus Buddleja. Objective Using molecular biology techniques to sequence and analyze the complete chloroplast (cp) genome of B. lindleyana Methods According to next-generation sequencing to sequence the genome data, a series of bioinformatics software were used to assembly and analysis the molecular structure of cp genome of B. lindleyana. Results The complete cp genome of B. lindleyana is a circular 154,487-bp-long molecule with a GC content of 38.1%. It has a familiar quadripartite structure, including a large single-copy region (LSC; 85,489 bp), a small single-copy region (SSC; 17,898bp) and a pair of inverted repeats (IRs; 25,550 bp). A total of 133 genes were identified in the genome, including 86 protein-coding genes, 37 tRNA genes, 8 rRNA genes and 2 pseudogenes. Conclusions These results suggested that B. lindelyana cp genome could be used as a potential genomic resource to resolve the phylogenetic positions and relationships of Loganiaceae, and will offer valuable information for future research in the identification of Buddleja species and will conduce to genomic investigations of these species.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Kuan Liu ◽  
Rong Wang ◽  
Xiu-Xiu Guo ◽  
Xue-Jie Zhang ◽  
Xiao-Jian Qu ◽  
...  

Eragrostideae Stapf, the second-largest tribe in Chloridoideae (Poaceae), is a taxonomically complex tribe. In this study, chloroplast genomes of 13 Eragrostideae species were newly sequenced and used to resolve the phylogenetic relationships within Eragrostideae. Including seven reported chloroplast genomes from Eragrostideae, the genome structure, number and type of genes, codon usage, and repeat sequences of 20 Eragrostideae species were analyzed. The length of these chloroplast genomes varied from 130,773 bp to 135,322 bp. These chloroplast genomes showed a typical quadripartite structure, including a large single-copy region (77,993–80,643 bp), a small single-copy region (12,410–12,668 bp), and a pair of inverted repeats region (19,394–21,074 bp). There were, in total, 129–133 genes annotated in the genome, including 83–87 protein-coding genes, eight rRNA genes, and 38 tRNA genes. Forward and palindromic repeats were the most common repeat types. In total, 10 hypervariable regions (rpl22, rpoA, ndhF, matK, trnG–UCC-trnT–GGU, ndhF–rpl32, ycf4–cemA, rpl32–trnL–UAG, trnG–GCC–trnfM–CAU, and ccsA–ndhD) were found, which can be used as candidate molecular markers for Eragrostideae. Phylogenomic studies concluded that Enneapogon diverged first, and Eragrostis including Harpachne is the sister to Uniola. Furthermore, Harpachne harpachnoides is considered as a species of Eragrostis based on morphological and molecular evidence. In addition, the interspecies relationships within Eragrostis are resolved based on complete chloroplast genomes. This study provides useful chloroplast genomic information for further phylogenetic analysis of Eragrostideae.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kyu Tae Park ◽  
SeonJoo Park

Hepatica is a small genus of Ranunculaceae with medicinal and horticultural value. We characterized nine complete chloroplast (cp) genomes of Hepatica, which ranged from 159,549 to 161,081 bp in length and had a typical quadripartite structure with a large single-copy region (LSC; 80,270–81,249 bp), a small single-copy region (SSC; 17,029–17,838 bp), and two copies of inverted repeat (IR; 31,008–31,100 bp). The cp genomes of Hepatica possess 76 protein-coding genes (PCGs), 29 tRNAs, and four rRNA genes. Comparative analyses revealed a conserved ca. 5-kb IR expansion in Hepatica and other Anemoneae; moreover, multiple inversion events occurred in Hepatica and its relatives. Analyses of selection pressure (dN/dS) showed that most of the PCGs are highly conserved except for rpl20 and rpl22 in Hepatica falconeri, Hepatica americana, and Hepatica acutiloba. Two genes (rps16 and infA) were identified as pseudogenes in Hepatica. In contrast, rpl32 gene was completely lost. The phylogenetic analyses based on 76 PCGs resolved the phylogeny of Hepatica and its related genera. Non-monophyly of Anemone s.l. indicates that Hepatica should be reclassified as an independent genus. In addition, Hepatica nobilis var. japonica is not closely related to H. nobilis.


2020 ◽  
Author(s):  
Fei Dong ◽  
Zhicong Lin ◽  
Jing Lin ◽  
Ray Ming ◽  
Wenping Zhang

Abstract Background: Rambutan (Nephelium lappaceum L.) is an important fruit tree belongs to the family Sapindaceae and widely cultivated in Southeast Asia. The chloroplast of plants, as a photosynthetic organelle plays an important role in the photosynthesis and secondary metabolic activities. The chloroplast genome sequencing has become an integral part in understanding the genomic machinery and the phylogenetic histories of rambutan organelles.Results: We sequenced its chloroplast genome and assembled 161,321 bp circular DNA. It is characterized by a typical quadripartite structure composed of a large (86,068 bp) and small (18,153 bp) single-copy region interspersed by two identical inverted repeats (IRs) (28,550 bp). We identified 132 genes including 78 protein-coding, 29 tRNA and 4 rRNA genes, with 21 genes duplicated in the IRs. Sixty-three simple sequence repeats (SSRs) and 98 repetitive sequences were detected. Twenty-nine codons showed biased usage and 49 potential RNA editing sites were predicted across 18 protein-coding genes in the rambutan chloroplast genome. In addition, coding gene sequence divergence analysis of N. lappaceum suggested that ccsA, clpP, rpoA, rps12, psbJ and rps19 were under positive selection, which might reflect specific adaptations of N. lappaceum to its particular living environment. Comparative chloroplast genome analyses from five species in Sapindaceae revealed that a higher similarity was conserved in the IR regions than in the LSC and SSC regions. The phylogenetic analysis showed that N. lappaceum chloroplast genome has the closest relationship with that of Pometia tomentosa. Conclusions: The understanding of the chloroplast genomics of rambutan and comparative analysis of Sapindaceae species would provide insight into future research on the breeding of rambutan and Sapindaceae evolutionary studies.


Sign in / Sign up

Export Citation Format

Share Document